Державне підприємство
«Національна енергетична компанія «Укренерго»

СОУ НЕК 20.171:2017

СТАНДАРТ ПІДПРИЄМСТВА

МЕТОДОЛОГІЯ АНАЛІЗУ ВИТРАТ І ВИГОД ПРОЕКТИВ РОЗВИТКУ ЕЛЕКТРИЧНИХ МЕРЕЖ

 Київ
2017
ПЕРЕДМОВА

1 ЗАМОВЛЕНО: ДП «НЕК «Укренерго»

2 РОЗРОБЛЕНО: Відокремлений підрозділ «Науково-проектний центр розвитку ОЕС України» ДП «НЕК «Укренерго»

3 РОЗРОБНИКИ: Я. Бовкун, О. Болдирєв (керівник роботи), В. Бурлака, О. Дуброва, А. Квицинський, Т. Кравченко, О. Симоненко, Л. Тарасенко, Т. Шаповалова

4 ВНЕСЕНО: Виробнико-технічний відділ ДП «НЕК «Укренерго»

5 ПОГОДЖЕНО: Заступник директора з розвитку та експлуатації мережі – технічний директор ДП «НЕК «Укренерго» М. Бєлкін

Начальник виробнико-технічного відділу ДП «НЕК «Укренерго» В. Московчук

Директор з юридичного забезпечення ДП «НЕК «Укренерго» М. Юрков

6 ЗАТВЕРДЖЕНО ТА НАДАНО ЧИННОСТІ: наказ ДП «НЕК «Укренерго» від 23 листопада 2017 р. № 370

7 УВЕДЕНО ВПЕРШЕ

8 ТЕРМІН ПЕРЕВІРКИ: 2021 рік

Право власності на цей документ належить ДП «НЕК «Укренерго»

© ДП «НЕК «Укренерго», 2017
Про затвердження стандарту підприємства «Методологія аналізу витрат і вигод проектів розвитку електричних мереж»

З метою обґрунтування включення до Плану розвитку системи передачі на наступні 10 років та визначення черговості будівництва об’єктів магістральних і міждержавних електричних мереж за допомогою гармонізованого з вимогами ENTSO-E загальносистемного аналізу витрат і вигод проектів розвитку електричних мереж

НАКАЗУЮ:

1. Затвердити та ввести в дію стандарт підприємства «Методологія аналізу витрат і вигод проектів розвитку електричних мереж» (далі — Методологія), що додається.

2. Керівникам структурних підрозділів апарату управління ДП «НЕК «Укренерго» та відомчих підрозділів подати до виробничо-технічного відділу (Московчук В.П.) заявки щодо необхідної кількості примірників Методології для забезпечення виробничих потреб.
 Термін — до 05.12.2017

3. Виконавчому директору НПЦР ОЕС України Брехту О.О.:
 3.1. Забезпечити виготовлення оригінал-макета Методології та передачу його до Укренергосервісу.
 3.2. Організувати розміщення тексту Методології на офіційному сайті ДП «НЕК «Укренерго».

4. Начальнику виробничо-технічного відділу Московчуку В.П. забезпечити внесення Методології до реєстру чинних стандартів ДП «НЕК «Укренерго».
5. Директору Укренергосервісу Поліщукову В.П. забезпечити виготовлення замовленої кількості примірників Методології та видачу їх зі складу Укренергосервісу.

6. Контроль за виконанням цього наказу покласти на заступника директора з розвитку і експлуатації мережі - технічного директора Бєлкіна М.М.

Тимчасово виконуючий обов'язки директора

В.В. Ковальчук
ЗМІСТ

1 Сфера застосування .. 1
2 Нормативні посилання .. 1
3 Терміни та визначення понять ... 1
4 Позначення та скорочення ... 5
5 Оцінювання проекту: комбінованій аналіз витрат і вигод та
 багатокритеріальний аналіз ... 6
 5.1 Загальні вимоги ... 6
 5.2 Підбір проектів до оцінювання ... 10
 5.3 Основа оцінювання .. 11
 5.4 Розрахунок пропускної здатності мережі .. 14
 5.5 Оцінювання вартості та екологічної відповідальності ... 14
 5.6 Граничні умови та основні параметри оцінювання вигоди .. 16
 5.7 Підвищення надійності електропостачання ... 18
 5.8 Соціально-економічний ефект (добробут) .. 19
 5.9 Підтримка інтеграції відновлювальних джерел енергії ... 21
 5.10 Зменшення технологічних витрат електричної
 енергії (енергоефективність) ... 22
 5.11 Зменшення викидів CO₂ .. 23
 5.12 Збільшення технічної стійкості / запасу експлуатаційної
 безпеки системи .. 25
 5.13 Відмовостійкість / гнучкість .. 26
 5.14 Загальна оцінка та аналіз чутливості .. 27
Додаток А Приклад групування проектів розвитку магістральних
і міждержавних електричних мереж .. 28
Додаток Б Багатокритеріальний аналіз порівняно з аналізом витрат і вигод 29
Додаток В Приклад підсумкової таблиці оцінювання проектів розвитку
маґістральних і міждержавних електричних мереж .. 30
Додаток Г Оцінка впливу на навколишнє середовище і соціального впливу 31
Додаток Д Визначення очікуваного недовідпуску електричної енергії та втраченого навантаження ... 40
Додаток Е Приклад виконання електричних розрахунків, які моделюють ситуацію відключення одного з автотрансформаторів на підстанції 44
Додаток Ж Аналіз загального надлишку .. 45
Додаток И Методичні засади ранжування інвестиційної привабливості об’єктів нового будівництва електричних мереж, віднесених до проектів інші (вид 1) .. 47
Додаток К Приклад розрахунку узагальненого (інтегрального) показника ефективності проекту з нового будівництва ліній електропередавання напругою 330 кВ, віднесеного до проекту інший (вид 1) .. 53
Додаток Л Приклад використання SWOT-аналізу проекту з метою ранжування інвестиційної привабливості об’єктів реконструкції і технічного переоснащення електричних мереж, не пов’язаних із підвищенням пропускної здатності мережі, віднесених до проектів інші (вид 2) .. 56
Додаток М Бібліографія ... 58
ВСТУП

Надійне і безпечне постачання суспільству електричної енергії грунтується на тому, що об’єкти електричних мереж проекуються, будується, експлуатуються і ліквідовуються відповідно до сформульованих нормативних документів, які нормовано згідно з вимогами нормативних документів, які увібрали як досвід будівництва та експлуатації електричних мереж, так і досягнення розвитку науки і технологій.

Нормативний документ «Методологія аналізу витрат і вигод проектів розвитку електричних мереж» описує загальні принципи і методики, в тому числі – методики ринкового і мережевого аналізу, які будуть використовуватися під час виконання комбінованого аналізу витрат і вигод та багатокритеріального аналізу з метою розробки оператором системи передачі Плану розвитку системи передачі на наступні 10 років та інвестиційної програми на його підставі. Він також слугуватиме як основа для гармонізованої оцінки розвитку електричних мереж на рівні проектів наднаціональних і проектів, що становлять спільний інтерес.

Результати ринкового аналізу (баланс потужності і енергії, розподілення навантаження між електростанціями/енергоблоками тощо) використовуються як вихідні дані для мережевого аналізу з метою визначення потокорозподілення навантаження і обмежень, що забезпечує вибір найбільш репрезентативних випадків для розгляду. Результати порівнюються, і адекватність передачі додатково вимірюється, що дозволяє здійснювати ітераційний процес вивчення проектів із необхідним посиленням пропускної здатності мережі для підтримки графіків обміну великими потоками, виявленими під час ринкового аналізу.

Таким чином Методологія – це не однонаправлений процес, а процес з кількома контурами зворотного зв’язку, які можуть змінювати прийняті допущення (такі як резерв, гнучкість, стале виробництво). Отже, важливо, зберігаючи кількість сценаріїв і випадків, характеристики яких визначено кількісно та обмежено, оцінити вплив можливих шляхів їх реалізації через аналіз чутливості.

Передбачається, що використання різних сценаріїв довгострокового розвитку електричної мережі призведе до визначення нових потреб її гнучкого розвитку, які в змозі впоратися з цілою низкою можливих майбутніх енергетичних проблем, викладених у сценаріях.

Проте, електроенергетична система України має певні особливості, а саме:
- понад 90% ліній електропередавання напругою 220 кВ і вище та 55% основного устаткування підстанцій відпрацювали розрахунковий технічний ресурс, який складає 25 років, а 56% ліній електропередавання і 17% підстанцій експлуатуються понад 40 років;
- 83% енергоблоків теплових електростанцій і теплоелектроцентралей відпрацювали більше 200 тис. годин (граничний ресурс), є фізично зношеними й морально застарілими та потребують реконструкції або заміни.

З урахуванням наведених вище особливостей та того факту, що відповідно до базового сценарію розвитку електроенергетики України суттєвих змін в балансах генерації і споживання по регіональних енергосистемах не очікується, в додатках до Методології висвітлено методичні підходи, які враховують особливості сучасного стану національної електроенергетики.

Методологія відповідає потребам енергетичної галузі, враховує вимоги чинних стандартів і нормативно-правових актів.
методологія аналізу витрат і вигод проєктів розвитку електричних мереж

Чинний від 2017-11-23

1 СФЕРА ЗАСТОСУВАННЯ

1.1 Стандарт підприємства «Методологія аналізу витрат і вигод проєктів розвитку електричних мереж» (далі – Методологія) устанавлює порядок оцінювання витрат і вигод від будівництва об’єктів магістральних і міждержавних електричних мереж з метою обґрунтування необхідності та черговості їх будівництва в межах Плану розвитку системи передачі на наступні 10 років (далі – План).

1.3 Під час аналізу витрат і вигод нового будівництва об’єктів електричних мереж, з метою ранжування інвестиційної привабливості об’єктів будівництва, дозволено застосовувати методу «витрати – ефект», методу узагальненого показника або методу цільового програмування, які забезпечують згортання векторного показника ефективності до скалярного.

1.4 Проекти будівництва об’єктів електричних мереж, які передбачено виконувати із залученням коштів міжнародних кредитних установ, повинні враховувати додаткові умови, встановлені такими установами.

2 НОРМАТИВНІ ПОСИЛАННЯ

У цій Методології є посилання на такі нормативні документи:
ДСТУ 2860-94 Надійність техніки. Терміни та визначення
ДСТУ 3429-96 Електрична частина електростанції та електричної мережі. Терміни та визначення
ДСТУ 3440-96 Системи енергетичні. Терміни та визначення.

3 ТЕРМІНИ ТА ВИЗНАЧЕННЯ ПОНЯТЬ

У цій Методології використано терміни та визначення понять, установлені:
Законом України «Про Загальнодержавну програму формування національної екологічної мережі України на 2000–2015 роки» [1]: біологічне (біотичне) різноманіття, кадастр територій та об’єктів природно-заповідного фонду, природний ландшафт;
Законом України «Про ринок електричної енергії» [2]: балансуючий ринок електричної енергії, безпека постачання електричної енергії, електрична мережа, електроенергетика, електроенергетичне підприємство, міждержавна лінія електропередачі, міждержавний перетин, об’єднана енергетична система України, об’єкт електроенергетики, оператор системи передачі, операційна безпека мережі, передача електричної енергії, ринок електричної енергії, розвиток ОЕС України, система передачі електричної енергії;

ГНД 34.09.104 [9]: нетехнічні втрати електроенергії в електричних мережах, технічні розрахунки втрати електроенергії в елементах електричних мереж, технологічні втрати електроенергії в електричних мережах;

ДБН А.2.2-3 [10]: будівництво, нове будівництво, об’єкт будівництва, передпроектні роботи, проектна документація, реконструкція, робоча документація, робочий проект, стадії проектування, техніко-економічне обґрунтування, технічне переоснащення;

ДСТУ 2860: надійність; простій;
ДСТУ 3429: лінія електропередавання, (електрична) підстанція;
ДСТУ 3440: максимум навантаження енергосистеми, максимум навантаження енергостанції, стійкість енергосистеми;
СОУ-Н ЕЕ 40.1-00100227-101 [11]: електростанція гарантованої потужності, критерій N-1, розподільна електрична мережа, центр живлення;
СОУ-Н ЕЕ 40.1-00100227-103 [12]: довгострокова перспектива;
СОУ-Н МЕВ 40.1-00100227-68 [13]: перетин (в електричній мережі).

Нижче наведено терміни, які вжито в цій Методології додатково, та визначення означених ними понять:

3.1 адекватність передачі (електричної енергії)
Відповідність передачі електричної енергії у необхідних обсягах встановленим вимогам щодо надійності, якості, енергоохочадності, стійкості тощо

3.2 векторний показник ефективності
Випадок, коли корисний ефект визначається групою частинних показників ефективності

3.3 життєвий цикл проекту
Проміжок часу між моментом появи проекту (початком його реалізації) і його ліквідації. У життєвому циклі проекту розрізняють передінвестиційну, інвестиційну та експлуатаційну стадії (фази)

3.4 збільшення пропускної здатності мережі (ПЗМ)
Збільшення ПЗМ, яке відповідає, щонайменше, одній з наступних мінімальних вимог:
– щонайменше 100 МВт додаткової пропускної здатності у контролюваному перетині;
– приєднання або надійна видача щонайменше 0,1 ГВт/1000 км² генерації;
– безпечне зростання навантаження протягом щонайменше 10 років для зони, яка представляє споживання, більше ніж 0,3 ТВт·год/рік

3.5 корисний ефект
Сукупність властивостей об’єкта, що робить його (об’єкта) використання корисним
3.6 критерій ефективності
Правило, відповідно до якого уповноважена особа приймає рішення щодо ефективності проекту

3.7 мережовий аналіз
Дослідження базової мережі (всі N елементів мережі в роботі) і різних типів аварій (N-1 елемент мережі в роботі) засобами математичного моделювання з метою визначення в мережі потокорозподілення, рівнів напруги, струмів короткого замикання, границь стійкості, втрат енергії, обмежень тощо
Примітка. Вимоги щодо змісту і обсягів мережевого аналізу унормовано СОУ-Н ЕЕ 40.1-00100227-103 [12]

3.8 метод «витрати – ефект»
Метод оптимізації, який використовує згортання частинних скалярних показників ефективності e_{ij} в узагальнений показник E_1, обчислений за формулою:

$$E_1 = \prod_{j=1}^{6} e_{ij} \bigg/ \prod_{j=7}^{9} e_{ij}$$

де $j=1,..,6$ – частинні показники, які бажано збільшувати;
$j=7,..,9$ – частинні показники, які бажано зменшувати

3.9 метод узагальненого показника
Метод оптимізації, який використовує згортання частинних скалярних показників ефективності e_{ij} в узагальнений показник E_2, обчислений за формулою:

$$E_2 = \sum_{j=1}^{9} k_j \cdot e_{ij}$$

де k_j – коефіцієнт значимості j-го показника, який визначається експертним шляхом
Примітка. Якщо частинні показники e_{ij} неоднорідні, використовують їх відносні значення

3.10 метод цільового програмування
Метод оптимізації, який використовує згортання частинних скалярних показників ефективності e_{ij} в узагальнений показник E_3, який відповідає відстані до «ідеальної» (з точки зору особи, що приймає рішення) точки в просторі значень векторного показника ефективності w_{jid}, обчислений за формулою:

$$E_3 = \sum_{j=1}^{9} g_j \cdot (e_{ij} - w_{jid})^2$$

де g_j – коефіцієнт важливості частинного показника, який встановлено особою, що приймає рішення
3.11 місія проекту
Основне завдання проекту з точки зору його майбутніх послуг, важливіших ринків та технологій

3.12 особа, що приймає рішення
Юридична або фізична особа, яка приймає певне рішення щодо будівництва об’єкта електричних мереж відповідно до цього стандарту

3.13 передінвестиційна стадія проекту
Проміжок часу між появою первинного задуму проекту і моментом ухвалення остаточного рішення про його реалізацію

3.14 показник ефективності
Числова характеристика, яка відображає результати будівництва об’єкта і є функцією корисного ефекту, витрат ресурсів і часу

3.15 проект
Pевна задача з визначеними вихідними даними і відомими результатами (цілями), які обумовлюють спосіб їх досягнення.
В галузі будівництва об’єктів електроенергетики розрізняють такі типи проектів:
1) проекти наднаціональні;
2) проекти, що становлять спільний інтерес;
3) проекти інші

3.16 проект інший
Проект, який не відноситься до проектів типу 1 і 2. Проекти типу 3 виконуються в мережах національного оператора систем передачі і спрямовані на удосконалення передавальної інфраструктури електроенергетики. В свою чергу проекти інші поділяються на два види: проект інший (вид 1) при новому будівництві та проект інший (вид 2) при реконструкції та технічному переоснащенні

3.17 проект наднаціональний
Проект, який передбачений планами Енергетичного Співтовариства/ENTSO-E та має ознаки, наведені в [22]

3.18 проект, що становить спільний інтерес
Проект, який захіщає інтереси операторів не менш ніж двох сусідніх електричних мереж (електропередавальних підприємств). Водночас, якщо проект також передбачений планами Енергетичного Співтовариства/ENTSO-E, то він відноситься до типу проект наднаціональний

3.19 ринковий аналіз
Аналіз характерних перспективних режимів роботи ОЕС (щонайменше зимовий та літній мінімум і мінімум для перспективи 5 і 10 років) з метою визначення розподілення навантаження між електростанціями, балансів потужності та енергії тощо.
Результати ринкового аналізу використовуються як вихідні дані для мережевого аналізу

3.20 скалярний показник ефективності
Показник, максимум якого відповідає максимуму ефективності
3.21 соціально-економічний ефект (званий також соціально-економічний добробут)

Характеристика проектів розвитку електричних мереж, яка відображає спроможність мережі забезпечити нову пропускну здатність для передачі електроенергії від виробників до споживачів, яка зменшить загальну вартість електропостачання для кінцевого споживача.

Покращення соціально-економічного ефекту (добробуту) забезпечується заходами зі збільшення пропускної здатності мережі, зменшення втрат електричної енергії в мережі, збільшення встановленої потужності існуючих підстанцій та будівництво нових підстанцій.

3.22 сценарій розвитку

Прогнозований розвиток енергосистеми, який дозволяє з тим або іншим рівнем достовірності визначити можливу тенденцію її розвитку, взаємозв’язок між діючими факторами та прогнозувати можливий стан, до якого може прийти енергосистема.

3.23 SWOT-аналіз проекту

Аналітичний інструмент оцінки реалізації проекту, його внутрішнього потенціалу (сильних та слабких сторін), можливостей та загроз зовнішнього середовища.

Складовими SWOT-аналізу проекту є:
сильні сторони – внутрішні можливості (навички, потенціал) чи ресурс реалізації проекту, що можуть зумовити формування конкурентної переваги чи належного виконання відповідних функцій;
слабкі сторони – фактори, наявність або відсутність яких заважає досягненню місії та цілей реалізації проекту;
можливості – обставини, які можуть бути використані для досягнення стратегічних цілей (результатів) реалізації проекту;
загрози – будь-які процеси або явища, що перешкоджають руху в напрямі досягнення місії та цілей реалізації проекту.

4 ПОЗНАКИ ТА СКОРОЧЕННЯ

У цій Методології застосовані такі скорочення:

АСОЕ – автоматична система обліку електричної енергії;
АТ – автотрансформатор;
ВДЕ – відновлювальні джерела енергії;
ЄС – Європейський Союз;
КЛ – кабельна лінія електропередавання;
КРУЕ – комплектна розподільча установка елекегазова;
ЛЕП – лінія електропередавання;
МЕА – Міжнародне енергетичне агентство;
ММЕМ – магістральні і міждержавні електричні мережі;
ОЕС України – об’єднана енергетична система України;
ПЗМ – пропускна здатність мережі;
ПЛ – повітряна лінія електропередавання;
ПС – підстанція;
РУ – розподільча установка;
5 ОЦІНЮВАННЯ ПРОЕКТУ: КОМБІНОВАНИЙ АНАЛІЗ ВИТРАТ І ВИГОД ТА БАГАТОКРИТЕРІАЛЬНИЙ АНАЛІЗ

5.1 Загальні вимоги

5.1.1 Цю Методологію застосовують для оцінювання проектів з метою ранжування їх інвестиційної привабливості під час процесу формування Плану (див. рисунок 5.1).

5.1.2 План розробляється на основі Звіту з оцінки відповідності (достатності) генеруючих потужностей (далі – Звіт), а також Планів розвитку суміжних систем передачі, систем розподілу електричної енергії.

5.1.3 Оператор системи передачі щороку розробляє Звіт для покриття прогнозованого попиту на електричну енергію та забезпечення необхідного резерву з урахуванням вимог безпеки постачання.

Звіт має включати:
– аналіз розвитку економіки країни за останні 5–10 років в контексті змін рівнів та режимів електропостачання, імпорту та експорту електроенергії;
– аналіз структури виробництва електроенергії за останні 5–10 років, наявності та впливу на її формування забезпеченості органічним та ядерним паливом, гідроресурсами, а також цін на електричну та теплову енергію, що відпускається з ТЕЦ;
– опис сценаріїв розвитку – прийняті припущення щодо: розвитку економіки країни; демографічної ситуації; зміни клімату; зобов’язань щодо обмеження викидів парникових газів, розвитку відновлюваної енергетики та підвищення енергоєктивності, темпів та напрямів науково-технічного прогресу в електроенергетиці тощо;
– методики моделювання попиту/пропозиції на електричну енергію та роботи ОЕС України;
– аналіз основних тенденцій розвитку генеруючих потужностей та навантаження;
Рисунок 5.1 – Концептуальні засади застосування Методології аналізу витрат і вигод для оцінювання проектів з метою ранжування їх інвестиційної привабливості під час процесу формування Плану
– оцінку ризиків ОЕС України у разі настання критичних умов з використанням відповідних критеріїв оцінки;

– результати розрахунків режимів роботи ОЕС України за найважчими сценаріями та заходи із запобігання дефіциту генеруючої та передавальної потужності.

5.1.4 Оператор системи передачі щороку розробляє План, що має забезпечувати відповідність системи передачі потребам ринку електричної енергії та інтересам безпеки постачання електричної енергії.

План має містити:
– аналіз роботи ОЕС України за останні 3–5 років;

– цільовий сценарій розвитку ОЕС України на перспективу десяти років, оцінку його адекватності та аналіз ризиків щодо можливості реалізації та забезпечення вимог безпеки постачання та стандартів операційної безпеки;

– перелік необхідних заходів, спрямованих на забезпечення безпеки постачання електричної енергії та ефективного функціонування ринку електроенергії, зокрема, щодо розвитку генерації та передавальних електричних мереж;

– перелік основних об’єктів системи передачі, будівництво або реконструкцію яких є доцільними протягом наступних 10 років;

– інформацію щодо об’єктів системи передачі, які мають бути збудовані та/або реконструйовані протягом наступних 10 років, строки їх будівництва та/або реконструкції, джерела фінансування;

– інформацію про інвестиції в об’єкти системи передачі, щодо яких вже прийняти рішення та які перебувають на стадії реалізації, із зазначенням прогнозних інвестицій, що мають бути здійснені протягом наступних трьох років;

– оцінку суттєвих екологічних наслідків передбачених Планом проектів, які вже реалізуються або їх реалізація має високу ступінь ймовірності, та обґрунтування їх прийнятності згідно вимог щодо захисту довкілля;

– перспективні напрямки розвитку системи передачі.

5.1.5 Процес планування розвитку системи передачі має супроводжуватися розробкою та періодичним оновленням схем розвитку MMEM та враховувати розвиток розподільних електричних мереж ОЕС України.

5.1.6 Розроблення Звіту та Плану має здійснюватися на базі єдиної методології обґрунтування рішень з розвитку ОЕС України та на єдиній інформаційній базі.

5.1.7 Об’єкти електричних мереж, включені до Плану, повинні бути ранжовані в межах кожного з розділів Плану згідно з інвестиційною привабливістю відповідно до вимог Методології. Як вихідні дані до виконання аналізу витрат і вигод проектів розвитку електричних мереж з метою ранжування їх інвестиційної привабливості потрібно використовувати результати техніко-економічного обґрунтування (далі – ТЕО) будівництва, виконаного на передінвестиційній стадії життєвого циклу проекту.

5.1.8 Аналіз витрат і вигод проектів будівництва об’єктів електричних мереж потрібно виконувати відповідно до методичного інструментарію залежно від типу проекту з метою ранжування його інвестиційної привабливості під час процесу формування Плану (рис. 5.2).
Рисунок 5.2 – Концептуальні засади визначення методичного інструментарію відповідно до типу проекту з метою ранжування його інвестиційної привабливості під час процесу формування Плану
5.1.9 Проекти інші (рис. 5.2), спрямовані на розвиток ОЕС України, потрібно поділяти на такі групи:

– об’єкти загальносистемного значення, у т.ч.:
 – схеми видачі потужності атомних, гідро- і гідроакумулюючих станцій;
 – міжсистемні системоутворюючі лінії;
 – збільшення трансформаторної потужності ПС з вищою напругою понад 150 кВ;
– інфраструктура забезпечення надійного живлення промислових районів та великих міст;
– об’єкти, будівництво яких забезпечує підвищення економічності роботи ОЕС України, зменшення технологічних витрат електричної енергії (енергоефективність);
– об’єкти, будівництво яких забезпечує підвищення якості електроенергії в ОЕС України;
– об’єкти, рішення щодо будівництва яких прийнято схемами (програмами, планами) розвитку ММЕМ, програмами соціально-економічного розвитку окремих регіонів та територій.

5.1.10 У разі включення до Плану робіт з реконструкції (розширення, технічного переоснащення) ПС в межах існуючих територій, соціальні та екологічні наслідки такового будівництва потрібно визначати відповідно до СОУ-Н МЕВ 40.1-00100227-91 [14].

5.1.11 У разі включення до Плану робіт з реконструкції або технічного переоснащення повітряних ліній електропередавання, у тому числі переведення на вищу напругу по існуючих трасах, соціальні та екологічні наслідки такого будівництва потрібно визначати відповідно до СОУ-Н МЕВ 40.1-00100227-91.

5.1.12 Окремою групою до Плану включаються проекти будівництва об’єктів електричних мереж для яких результати аналізу витрат і вигод не є визначальним фактором, спрямовані на:

– забезпечення потреб обороноздатності та мобілізаційної готовності держави;
– приведення процесів і послуг у відповідність з вимогами чинних нормативних документів щодо життя і здоров’я людей;
– приведення процесів і послуг у відповідність до вимог законодавства у сфері екології, охорони довкілля та раціонального природокористування;
– усунення невідповідності обладнання електричних мереж вимогам нормативних документів (у т.ч. зобов’язанням міжнародного характеру), виконання приписів;
– забезпечення можливості здійснення ліцензованої діяльності під час дії непередбачуваних обставин, у т.ч. ліквідації наслідків стихійних лих.

5.2 Підбір проектів до оцінювання

5.2.1 Проекти розвитку магістральних і міждержавних електричних мереж (ММЕМ) мають, як правило, передбачити наступні заходи, а саме:

– посилення повітряних ліній електропередавання (ПЛ) для збільшення їхньої пропускаційної здатності (наприклад, заміна проводів на існуючих опорах ПЛ на проводи підвищеної механічної міцності і більшого перерізу, переведення існуючих ліній на більш високу напругу, підвищення другого ланцюга або додаткових проводів у фазі на існуючих опорах ПЛ);
– спорудження нових високотехнологічних ПЛ із заміною опор при збільшенні перерізів проводів або їх кількості та кабельних ліній електропередавання (КЛ) змінного струму (в тому числі з використанням трас фізично та морально застарілих ліній);
– спорудження підстанцій закритого типу, обладнаних комплектичними розподільними установками елегазовими (КРУЕ);
– розширення підстанцій (ПС), установка додаткового трансформатора, розвиток розподільних установок (РУ) для додаткових приєднань (в т. ч. з переходом на нову схему електричних з'єднань), заміна трансформаторів на більш потужні, переведення ПС на більш високу номінальну напругу;
– заміна фізично або морально застарілого обладнання ПС;
– установка обладнання з компенсації реактивної потужності (наприклад, конденсаторні батареї);
– метрологічне забезпечення обладнання та засоби вимірювальної техніки, які знаходяться в експлуатації;
– телемеханізація і автоматизація ПС;
– установка мережевого обладнання для регулювання потоків активної потужності (наприклад, пристроїв поздовжньої компенсації);
– установка пристроїв поперечного регулювання напруги.
5.2.2 Можливість групування декількох проектів для оцінювання при виконанні однієї задачі існує в умовах їх спільної залежності.
Групування проектів рекомендовано виконувати за наступних умов:
– проекти досягають загальної вимірюваної мети;
– проекти знаходяться в одному районі або вздовж одного транспортного коридору;
– проекти належать до загального плану в цьому районі або коридорі.
Групування проектів (інвестицій) може бути застосовано тільки тоді, коли проекти дійсно залежать один від одного, наприклад, коли загальна мета, яку передбачено в ході реалізації проекту, не може бути (повністю) досягнута без супроводжуючих проектів (одного чи кількох).
Конкуруючі проекти не можуть бути об’єднані.
Не можна групувати проекти, у яких дати введення в експлуатацію відрізняються більше ніж на 5 років.
При групуванні проектів витрати та вигоди мають враховуватися лише для одного (основного) проекту.
Приклад групування проектів наведений в додатку А.

5.3 Основа оцінювання
5.3.1 Основою оцінювання є комбінований аналіз витрат і вигод та багатокритеріальний аналіз, що відповідає Статті 11 і Додаткам IV і V до Регламенту (ЄС) 347/2013 (додаток Б) [17].
5.3.2 Основні категорії, до складу яких входять показники, що використовуються для оцінювання витрат і вигод проектів розвитку ММЕМ, наведені на рисунку 5.3.
5.3.3 При оцінюванні проектів розвитку ММЕМ застосовують наступні категорії вигод:
– підвищення надійності електропостачання;
– соціально-економічний ефект (добробут);
– підтримка інтеграції відновлювальних джерел енергії (ВДЕ);
– зменшення технологічних витрат електричної енергії (енергоефективність);
Рисунок 5.3 – Основні категорії методології оцінювання проектів розвитку ММЕМ

– зменшення викидів CO₂;
– збільшення технічної стійкості / запасу експлуатаційної безпеки системи;
– відмовостійкість / гнучкість.

5.3.4 Категорії вигод визначають наступним чином:

а) підвищення надійності електропостачання – це здатність енергосистеми забезпечити відповідну і надійну подачу електроенергії за звичайних умов (забезпечувати попит у повному обсязі за поточного стану готовності мережі), а також здатність енергосистеми задовольнити попит в повному обсязі у таких можливих нештатних ситуаціях, як відмови одиночних елементів передачі (тобто, нормальна схема мережі повинна відповідати вимогам критерію «N-1»);

б) соціально-економічний ефект (добробут) характеризується здатністю енергосистеми зменшити перевантаження і таким чином забезпечити відповідну ПЗМ, щоб учасники ринку електроенергії могли торгувати електроенергією ефективним, в економічному відношенні способом, забезпечуючи доступ споживачів до більш дешевої електричної енергії;

в) підтримка інтеграції ВДЕ визначається як здатність мережі забезпечити можливість приєднання нових ВДЕ, що сприятиме покращенню забезпечення графіка навантаження, особливо в енерговузлах, де спостерігається дефіцит потужності центрів живлення розподільної мережі;
г) зменшення технологічних витрат електричної енергії (енергоефективність) вимірюється через скорочення теплових втрат в елементах мережі. При незначних обсягах зростання електричних навантажень в розподільній мережі її розвиток загалі зменшує втрати, таким чином збільшуючи енергоефективність, а деякі заходи, як то зменшення відстані між виробництвом і споживанням, призводять також і до кращого графіка розподілення навантаження. До зменшення втрат призводять також підведення вищої напруги до центрів навантаження та використання сучасного ефективного обладнання в мережі. Енергоефективність сприяє покращенню соціально-економічного ефекту (добробуту) населення;

д) зменшення викидів CO₂ в енергосистемі є наслідком підтримки інтеграції ВДЕ, а також застосування енергоблоків з нижчим вмістом викидів диоксиду вуглецю;

е) збільшення технічної стійкості / запасу експлуатаційної безпеки системи визначається заходами, спрямованими на забезпечення роботи системи у разі виникнення нештатних та екстремальних ситуацій, як то збігання у часі відмов одних елементів системи з ремонтом інших. Зазначені рішення, які спираються виключно на професійне розуміння проблем енергетики, впливатимуть позитивно на майбутню енергоефективність і на забезпечення надійності електропостачання споживачів;

ж) відповідність / гнучкість є здатністю запропонованого проекту використовувати бути адекватним за різних можливих майбутніх шляхів розвитку або сценаріїв, у тому числі – торгові послугами з балансування.

5.3.5 Загальні витрати за проектом визначають в цінах поточного року за питомими показниками вартості елементів електричних мереж (будівництво 1 км ЛЕП, будівництво однієї ПС тощо). Отримані результати коригують за даними проектів – аналогів. В загальних витратах за проектом враховують витрати на охорону навколишнього середовища.

5.3.6 Категорії впливу проекту на суспільство визначають наступним чином:

а) вплив на навколишнє середовище, який має за мету надати міру екологічної чутливості, пов’язаної з проектом, визначають за результатами попередніх досліджень;

б) соціальний вплив, який ставить своєю метою надати міру соціальної чутливості, пов’язаної з проектом, визначають через вплив проекту на (місцеве) населення, визначений під час попередніх досліджень.

5.3.7 Збільшеною пропускної здатності мережі (ПЗМ) відповідає підвищення максимальної активної потужності, яка може бути передано через перетин (міждержавний кордон) за дотримання нормативних запасів стійкості, вимог допустимого струму елементів мережі, забезпечення динамічної стійкості в разі нормативних збурень та інших режимних умов.

Перетини і зміна ПЗМ через них можуть бути описані трьома типами характеристик, а саме:

– здатність до розміщення генерації – це здатність до застосування існуючих та спорудження нових генеруючих потужностей традиційної та відновлюваної енергетики. Вона дозволяє покращити баланс виробництва електроенергії між зонами експорту та імпорту. Зміни порядку навантаження генеруючих потужностей визначаються установленням ринком порядком ранжування навантаження;

– здатність до надійного електропостачання – це здатність, необхідна для запобігання відключення навантаження в конкретному регіоні, коли моделюються нештатні ситуації;
– інтеграція ринків дозволяє керовані ринком фізичні перетоки узгодити в межах та між об’єднаними зонами.

ПЗМ залежить від стану споживання, виробництва, обміну та топології мережі і враховує правила безпеки. Коли це стосується інтеграції ринків, ПЗМ є орієнтовною і це означає, що показники можуть бути різними в залежності від напрямку.

5.3.8 Загальну оцінку проекту відображають у вигляді багатокритеріальної таблиці, де всі показники визначені кількісно. Загальні витрати за проектом, соціально-економічний ефект (добробут), зменшення технологічних витрат електричної енергії (енергоефективність) мають бути показані в гривнях (з урахуванням необхідних поправок, враховуючи фінансові ризики), інші показники відображають за допомогою фізичних одиниць (тонни, кВт·год тощо), що забезпечує їх узгодженість з діючими нормативними документами галузі.

Приклад підсумкової таблиці оцінювання наведений в додатку В.

5.4 Розрахунок пропускної здатності мережі
Для оцінювання ПЗМ виконують розрахунки:
– усталених режимів (нормальних, післяаварійних (ремонтних), ремонтно-аварійних);
– статичної стійкості з перевіркою відсутності термічного перевантаження обладнання (для системоутворюючої мережі ОЕC України та для схем видавання потужності електростанцій);
– коливальної стійкості;
– динамічної стійкості (для схем видачі потужності електростанцій та прилеглих перетинів);
– струмів короткого замикання.

Приріст значення ПЗМ, забезпечений реалізацією проекту розвитку MMEM, має враховувати перевантаження в мережі (при проведенні аналізів результатів розрахунків).

5.5 Оцінювання вартості та екологічної відповідальності
5.5.1 Для кожного проекту мають бути оцінені витрати й невизначеності, що можуть спричинити додаткові витрати.

При оцінюванні витрат мають бути враховані такі елементи:
– очікувані витрати на обладнання, матеріали і будівельно-монтажні роботи (наприклад: опори, фундаменти, проводи, кабелі, підстанції, системи диспетчерського та технологічного управління, режимної та противарійної автоматики, релейного захисту, АСОЕ, засоби вимірювальної техніки тощо);
– очікувані витрати на тимчасові рішення, які необхідні для того, щоб реалізувати проект;
– очікувані витрати на екологію та отримання дозволів (такі як уникнення екологічних витрат, компенсації в рамках чинних правових положень, витрати на роботи з планування та рекультивації);
– очікувані витрати на пристрої та обладнання, які повинні бути замінені впродовж відповідного періоду (стосується терміну експлуатації пристроїв та обладнання);
– витрати на демонтаж наприкінці терміну експлуатації обладнання;
– витрати на технічне обслуговування обладнання впродовж терміну експлуатації.

5.5.2 Для проектів розвитку ММЕМ, як правило, тривалість перспективних періодів, що розглядаються, є коротшою, ніж технічне життя об’єктів планування. Об’єкти ММЕМ мають технічний термін служби до 80 років, але невизначеність щодо змін у виробництві і споживанні електроенергії для таких перспективних періодів настільки велика, що ніякий серйозний аналіз витрат і вигод не може бути виконаний. Відповідна залишкова вартість, таким чином, буде включена наприкінці року з використанням формул нормативної економічної амортизації, яку застосовує Підприємство, що здійснює передавання електричної енергії магістральними та міждержавними електричними мережами, або ініціатор проекту.

5.5.3 Для врахування витрат на екологію розглядають лише витрати на заходи, вжиті для пом’якшення наслідків. У зв'язку з тим, що деякі наслідки можуть залишатися і після цих заходів, для врахування всіх вимірюваних витрат і унеможливлення подвійного обліку між цими показниками, їх потім включають в показники впливу на навколишнє середовище і соціального впливу.

5.5.4 Вплив на навколишнє середовище і соціальний вплив характеризують місцевий вплив проекту на природу та населення, визначений під час попередніх досліджень. Це виражається в термінах кількості кілометрів ПЛ або підземного / підводного кабелю, які можуть проходити через екологічно та соціально «чутливі» зони (як це визначено в Додатку Г). Цей показник враховує лише залишковий вплив проекту, тобто ту частину впливу, яка не повністю враховується в загальних витратах за проектом. Метод оцінювання описаний в Додатку Г.

5.5.5 Під час виконання аналізу витрат необхідно використовувати наступні показники економічної ефективності проектів [5–6]:
– чиста приведена вартість проекту (NPV – *Net present value*);
– внутрішня норма рентабельності (IRR – *Internal rate of return*);
– термін окупності проекту (PP – *Payback period*);
– рентабельність за доходами (RCR – *Results costs ratio*).

Одним із основних показників економічної ефективності проекту є чиста приведена вартість проекту B^c, що дорівнює сумі дисконтованих чистих грошових потоків за розрахунковий період, і може бути обчислена за формулою:

$$B^c = \sum_{t=1}^{T} \frac{\Pi^c_t}{(1 + E)^t},$$

де Π^c_t – чистий грошовий потік в році t;
E – норма дисконту;
T – період реалізації проекту.
Внутрішня норма рентабельності є нормою дисконту $E = e$, за якою чиста приведена вартість проекту перетворюється на нуль, та обчислюється за формулою:

$$B_{ut} = \sum_{t=1}^{T} \frac{\Pi_{ut}}{(1 + e)^t} = 0,$$

де e – норма дисконту.

Термін окупності проекту T_n дорівнює року розрахункового періоду, після якого кумулятивна (наростаючим підсумком) сума чистих грошових потоків переходить із від’ємної зони у додатну, і може бути обчислений за формулою:

$$B_{ut} = \sum_{t=1}^{T_n} \frac{\Pi_{ut}}{(1 + E)^t},$$

де T_n – термін окупності проекту.

Рентабельністю за доходами R_d є відношення суми дисконтованих доходів та залишкової (балансової) вартості до суми дисконтованих витрат (що враховуються при визначенні чистих грошових потоків) та обчислюється за формулою:

$$R_d = \frac{\sum_{t=1}^{T} (D_t + 3_t) / (1 + E)^t}{\sum_{t=1}^{T} (B_{et} + B_{kpt} + B_{ampt} + H_{nt} + K_t) / (1 + E)^t},$$

де D_t – надходження за транспорт електроенергії та інші оподатковувані доходи в році t;

3_t – залишкова (балансова) вартість в році t;

B_{et} – витрати на експлуатацію мережі в році t;

B_{kpt} – оплата центрусів за кредит в році t;

B_{ampt} – вартість втрат електроенергії в році t;

H_{nt} – податок на прибуток в році t;

K_t – капітальні вкладення в році t.

5.6.1 Моделювання має здійснюватися на підставі детальної інформації про досліджувані зони, тоді як рівень деталізації може зменшуватися по мірі віддалення від них. Територіальне охоплення аналізу – енергорайон/енерговузел, на території якого проект має бути розроблений, всі найближчі енергорайони/енерговузли, на функціонування яких значно впливає проект.

Для проектів, що становлять міждержавний інтерес, досліджувана зона має охопити всі країни, на території яких проект має бути розроблений та всі найближчі країни, на які значно впливає проект.

5.6.2 Результати аналізу витрат і вигод залежать від обраного періоду дослідження. Аналіз починається з дати введення в дію/експлуатацію і поширюється на інтервал часу, що охоплює періоди дослідження. Як правило, рекомендується...
дослідити два перспективні періоди: середньостроковий і довгостроковий. Для оцінювання проектів на загальних підставах, вигоди мають бути об’єднані по роках наступним чином:

– для років між роком введення в дію/експлуатацію (початок вигод) та середньостроковою перспективою, прийняти вигоди на рівні середньострокової перспективи планування;

– для років між середньостроковою і довгостроковою перспективами планування, лінійно інтерполювати вигоди між середньостроковими і довгостроковими значеннями;

– упродовж років поза межами довгострокової перспективи, якщо такі є, лишити вигоди на рівні довгострокових.

Усі витрати і вигоди дисконтується до поточного часу і виражаються в цінах базового року.

5.6.3 При оцінюванні проектів розвитку ММЕМ можливо використовувати два методи:

– метод «Вилучення одного елемента» (TOOT – Take Out One at the Time) (далі – TOOT) з виключенням одного елемента на визначений проміжок часу, який полягає у виключенні інвестиційних об’єктів (лінія, підстанція, пристрої ММЕМ тощо) або цілих проектів із прогнозованої структури мережі за принципом один – за – одним й оцінювання потокорозподілу по вітках з урахуванням і без досліджуваного межевого проекту (нова лінія, нова підстанція, новий пристрій тощо);

– метод «Долучення одного елемента» (PINT – Put In One at the Time) (далі – PINT) з додаванням одного елемента на визначений проміжок часу, що розглядає кожний новий межевий проект/інвестицію (лінія, підстанція, пристрої ММЕМ тощо) у даній структурі мережі, один – за – одним, й оцінює потоки навантаження в лініях з досліджуваним посиленням мережі і без нього.

Метод TOOT дає оцінку вигод для кожного проекту, наче він є останній введений в експлуатацію. Фактично, метод TOOT оцінює кожну нову інвестицію або проект розвитку в повну прогнозовану мережу. Перевага цього методу полягає в тому, що він відразу оцінює всі вигоди, від кожної інвестиції, без урахування порядку інвестицій. Всі вигоди розглядаються превентивним шляхом, фактично кожний оцінюваний проект розглядається у «вже розвинений» енергосистемі, в якій присутні всі заплановані проекти розвитку і відтворено умови, в яких нова інвестиція буде експлуатуватися.

Проте слід зазначити, що для оцінювання сильно конкуруючих проектів, тобто проектів що надають одну послугу в мережі, може зазнатися кілька етапів:

– метод TOOT: якщо вигода значна, то всі проекти є корисними;

– незначні вигоди при першому оцінюванні TOOT не обов’язково означають, що жоден з проектів не має бути розпочатий. В цьому випадку слід взяти базову мережу без жодного конкуруючого проекту, і додавати їх один за одним. Це дозволить визначити доцільний рівень досягненого розвитку мережі.

Це твердження повинно застосовуватися до будь-якого з конкуруючих проектів. Оцінка допомагає ранжувати об’єкти електричних мереж, включені до Плану розвитку системи передачі на наступні 10 років, згідно з інвестиційною привабливістю, що враховує функцію корисності об’єкта.
Метод TOOT рекомендовано для аналізу витрат і вигод проектів при складанні Плану розвитку системи передачі на наступні 10 років, в той час як метод PINT – для індивідуального оцінювання проектів поза процесом складання Плану. Мережу, намічену в Плані, потім розглядають як базову мережу.

5.6.4 Методи для кожного показника вигоди наведено в підрозділах 5.7–5.14.

5.7 Підвищення надійності електропостачання
5.7.1 Оцінювання надійності електропостачання виконують для енергорайону/енерговузла, на території якого проект має бути реалізований, з використанням методів оцінювання, описаних в п. 5.6.3.

5.7.2 Для розрахунків під час оцінювання надійності електропостачання використовують ринкову або мережеву моделі.

Ринкові моделі використовують під час вирішення питань відповідності кількості виробництва електроенергії для визначення внеску проекту з передачі потужності, яка була згенерована десь у системі, у цю конкретну зону (балансова надійність).

Мережевим моделям віддається перевага в разі вивчення питань відповідності мережі, тобто визначення внеску проекту в надійність мережі (риск мережевих відмов, що призводять до втрати навантаження).

Методи оцінювання вигоди з п. 5.6.3 використовуються в обох випадках.

5.7.3 Для мережевого аналізу оцінка ефективності ґрунтується на технічних критеріях.

Аналіз репрезентативних випадків планування без проекту може, наприклад, визначити ризик втрати навантаження для звичайних нештатних ситуацій. Показник очікуваного недовідпуску електричної енергії (EENS – Expected Energy Not Supplied) (далі – EENS) тоді покаже, чи дає включення проекту до Плану значне поліпшення надійності електропостачання.

Методика визначення EENS для мережевого аналізу наведена в додатку D.

5.7.4 Ринковий аналіз покладається на ті самі випробування системи, але зі спрощенням представленням мережі. Під час цього оцінювання досліджується правоподібність ризиків для надійності електропостачання впродовж усього року в широкому діапазоні стохастичних сценаріїв щодо навантаження і виробництва (генерації), і тому може бути визнана ймовірність критичного стану енергосистеми.

Також, цей аналіз дозволяє визначити міру EENS у МВт-год/рік або очікуваного числа днів порушення електропостачання споживачів (LOLE – Loss of Load Expectancy) (далі – LOLE) у годинах/рік.

5.7.5 Про використовуваний метод слід повідомляти у підсумковій таблиці оцінювання (додаток В).

5.7.6 Визначення вартості втраченого навантаження споживачам (VOLL – Value of Lost Load) (далі – VOLL) на даний час виконувати недоцільно у зв’язку зі складністю визначення і мінливістю вартості, оскільки це залежить від регіонального та галузевого складу і ролі енергетики в економіці. Отримані результати VOLL носитимуть виключно індикативний характер, а тому не будуть використовуватися як основа для порівняльних розрахунків EENS або LOLE.
<table>
<thead>
<tr>
<th>Показник</th>
<th>Джерело інформації</th>
<th>Одиниця виміру</th>
<th>Монетизація показника (зовнішня або ринкова)</th>
<th>Рівень узгодженості показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOLE</td>
<td>Ринковий аналіз (відповідність (достатність) виробництва)</td>
<td>Години або МВт·год</td>
<td>VOLL</td>
<td>Національний</td>
</tr>
<tr>
<td>EENS</td>
<td>Мережевий аналіз (відповідність мереж/надійність експлуатації системи)</td>
<td>МВт·год</td>
<td>VOLL</td>
<td>Національний</td>
</tr>
</tbody>
</table>

5.7.7 Одним із можливих варіантів, який дозволить досить об’єктивно оцінити підвищення надійності електропостачання, є виконання електричних розрахунків, що моделюють ситуацію відключення одного із елементів електричних мереж (додаток Е).

5.8 Соціально-економічний ефект (добробут)

5.8.1 Проект, який збільшує ПЗМ між двома регіонами – учасниками торгів, дозволяє виробникам в регіоні з найнижчими цінами експортувати електроенергію в інший регіон з вищими цінами. Таким чином, збільшена пропускна здатність зменшує загальну вартість електропостачання.

Покращення соціально-економічного ефекту (добробуту) населення також забезпечується заходами зі збільшення пропускної здатності мережі, зменшення втрат електричної енергії в мережі, збільшення встановленої потужності існуючих ПС та будівництва нових ПС, за рахунок чого буде збільшений резерв потужності мережі, що впливатиме на зменшення вартості приєднання, а це, в свою чергу, сприятиме зростанню інвестиційної привабливості регіонів.

5.8.2 Для обчислення вигоди соціально-економічного ефекту (добробуту) використовують два різних підходи:

- витратний підхід до виробництва, який порівнює витрати на виробництво з проектом і без нього для різних регіонів – учасників торгів;
- підхід на основі загального надлишку, який порівнює надлишки виробника й споживача для обох регіонів – учасників торгів, а також плату за перевантаження перетину між ними – з проектом і без нього (додаток Ж).

5.8.3 Під час оцінювання соціально-економічного ефекту (добробуту) можливо використати два наступні методи, що враховують динамічність попиту на електричну енергію:

- попит, який має задовольнятися виробництвом, оцінюють за різними сценаріями, що змінюють вид кривої попиту на електроенергію (порівняно з існуючими кривими), щоб змоделювати майбутній вплив від використання смарт-грід мереж, електромобілів тощо. Характеристика попиту в цьому випадку буде відображати зміни у попиті на електроенергію з годин потенційно високих цін до відповідно потенційно низьких цін.
Витрати на виробництво, щоб задовольнити підвищений попит, мінімізуються за рахунок витратного підходу. Це прийняте допущення спрошує складність моделей, в яких попит на електроенергію може оброблятися як часовий ряд навантажень, що «мають бути задоволені». Водночас, розглядаються різні сценарії управління попитом; б) на основі гіпотези щодо рівнів цінової гнучкості попиту. У цьому випадку можливе застосування двох методів:

1) використовуючи витратний підхід до виробництва електроенергії, гнучкість ціни може враховуватися через моделювання її скорочення. «Готовність платити» може тоді встановлюватися, наприклад, на дуже високих рівнях для побутових споживачів, і на нижчих рівнях – для частини промислового навантаження;
2) використовуючи повний надлишковий метод, моделювання гнучкості споживання електроенергії може грунтуватися на кількісному аналізі зв’язку між ціною і споживанням електроенергії впродовж кожної години, дозволяючи представити характеристику споживання в кожному регіоні.

5.8.4 При використанні витратного підходу до виробництва електроенергії вигоду соціально-економічного ефекту (добробуту) розраховують виходячи зі зниження загальних витрат на генерацію за рахунок зміни ПЗМ, забезпеченю проєктом. Існують три наступні аспекти цієї вигоди:
– скорочуючи вузькі місця в мережі, які обмежують доступ генерації до ринку, проект може зменшити витрати, пов’язані з обмеженням доступу генерації як у межах регіонів – учасників торгів, так і між ними;
– проект може сприяти зменшенню витрат, забезпечуючи пряме приєднання системи до нового об’єкту генерації з відносно низькою ціною. У разі приєднання ВДЕ це безпосередньо виражено категорією вигоди «Підтримка інтеграції ВДЕ». В інших випадках, прями показники приєднання будуть доступні в базових сценаріях;
– проект може сприяти зростанню конкуренції між виробниками, зниженню цін на електроенергію для кінцевих споживачів.

Економічна оптимізація проводиться для визначення оптимальної вартості розподілу виробництва електроенергії – з проєктом і без нього. Вигода (за кожну годину) для кожного випадку розраховується як різниця між витратами виробництва без проєкту та витратами виробництва з проєктом.

Соціально-економічний ефект (добробут) може бути обчислений для внутрішніх обмежень, розглядаючи віртуальні менші регіони – учасники торгів (з різними ринковими цінами), що розділені перевантаженням внутрішнім кордоном всередині регіону – учасника торгів.

Повна вигода для періоду, що розглядається, обчислюється підсумовуванням вигоди впродовж всіх годин року, використовуючи ринковий аналіз.

5.8.5 При використанні підходу на основі загального надлишку вигода від соціально-економічного ефекту (добробуту) розраховується шляхом складання надлишків виробника, надлишків споживача і плати за перевантаження для всіх цінових регіонів згідно з рис. 5.4. Підхід на основі загального надлишку полягає у наступному:
– зі зменшенням кількості вузьких місць у мережі, повні витрати на виробництво стають в економічному відношенні оптимізованими. Це відображається в сумі надлишків виробника;
скорочуючи кількість вузьких місць у мережі, які обмежують доступ імпорту з дешевих зон, можна зменшити витрати сумарного споживання. Це відображається в сумі надлишків споживача;
скорочення кількості вузьких місць у мережі призведе до зміни загальної плати за перевантаження (якщо така введена) для підприємства, що здійснює передачу електричної енергії мережами.

Рисунок 5.4 – Приклад нового проекту збільшення ПЗМ між регіонами експорту та імпорту

Економічна оптимізація проводиться для визначення загальної суми надлишку виробника, надлишку споживача та зміни плати за перевантаження з проектом і без нього. Вигода (за кожну годину) для кожного випадку розраховається як різниця між загальним надлишком з проектом та загальним надлишком без проекту. Повна вигода для періоду, що розглядається, обчислюється підсумовуванням вигоди впродовж всіх годин року, використовуючи ринковий аналіз.

<table>
<thead>
<tr>
<th>Показник</th>
<th>Джерело інформації</th>
<th>Одиниця виміру</th>
<th>Монетизація показника (зовнішня або ринкова)</th>
<th>Рівень узгодженості показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скорочення витрат на виробництво / додатковий загальний добробут</td>
<td>Ринковий аналіз (оптимізація зовнішніх поставок генерації)</td>
<td>Грн.</td>
<td>Те саме</td>
<td>Європейський</td>
</tr>
<tr>
<td>Внутрішні витрати на послуги диспетчеризації</td>
<td>Мережевий аналіз (оптимізація розподілу навантаження між електростанціями в межах кордонів з урахуванням мережевих обмежень)</td>
<td>Грн.</td>
<td>Те саме</td>
<td>Національний</td>
</tr>
</tbody>
</table>

5.9 Підтримка інтеграції відновлювальних джерел енергії
5.9.1 Інтеграція існуючих і запланованих ВДЕ має забезпечуватися за рахунок:
приєднання електростанцій, що працюють на ВДЕ до системоутворюючої мережі;
збільшення ПЗМ між регіоном з надлишком виробництва (генерації) з ВДЕ та іншими регіонами, щоб сприяти підвищенню рівня використання ВДЕ.
5.9.2 Показник окремо забезпечує кількісне відображення додаткових ВДЕ, доступних для системи. Він вимірює скорочення виробництва з ВДЕ у МВт·год (компенсуючи зниження) і додатковий обсяг виробництва за рахунок ВДЕ, який підключений за проектом. Явна відмінність, таким чином, складається між проектами інтеграції ВДЕ, пов'язаними з прямим приєднанням ВДЕ до системоутворюючої мережі, і проектами зі збільшення ПЗМ в самій ОЕС України.

5.9.3 Пряме приєднання виражається у МВт приєднаних ВДЕ (без урахування фактичних перетоків, яких вдалось уникнути), у той час як показник на основі ПЗМ виражається як уникнуте скорочення (в МВт) у зв'язку зі (зменшеним) перевантаження в основній системі. Дані про уникнуті перетоки запозичують з досліджень для показника «Соціально-економічний ефект (добробут)» (н. 5.8). За допомогою мережевого аналізу отримують і обчислюють дані про приєднані ВДЕ лише для спеціальних проектів інтеграції ВДЕ. Обидва види показників можуть використовуватися для попередньої оцінки проекту за умови, що про використаний метод повідомляється у підсумковій таблиці оцінювання (додаток В). В обох випадках, основа розрахунку – обсяги ВДЕ, передбачені в сценарії або розрахунковому випадку для планування.

5.9.4 Монетизація (визначення грошового еквіваленту) цього показника відображається у показнику «Соціально-економічний ефект (добробут)» (п. 5.8). Вигоди ВДЕ з точки зору скорочення викидів CO₂ відображаються у відповідному показнику «Зменшення викидів CO₂» (п. 5.11).

<table>
<thead>
<tr>
<th>Показник</th>
<th>Джерело інформації</th>
<th>Одиниця виміру</th>
<th>Монетизація показника (зовнішня або ринкова)</th>
<th>Рівень узгодженості показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>Приєднання ВДЕ</td>
<td>Ринковий або межевий аналіз</td>
<td>МВт</td>
<td>Немає</td>
<td>Європейський</td>
</tr>
<tr>
<td>Уникнуті перетоки ВДЕ</td>
<td>Ринковий або межевий аналіз</td>
<td>МВт·год</td>
<td>Входить в економію витрат при виробництві електричної енергії (показник «Соціально-економічний ефект (добробут)»)</td>
<td>Європейський</td>
</tr>
</tbody>
</table>

5.10 Змінення технологічних витрат електричної енергії (енергоефективність)

5.10.1 Вигода енергоефективності проекту вимірюється через скорочення втрат електричної енергії у системі. За постійних рівнів транзиту розвиток мережі взагалі зменшує втрати, таким чином збільшуючи енергоефективність. Спеціальні проекти можуть також призвести до кращого графіка розподілення навантаження, коли вони зменшують відстань між виробництвом і споживанням. Підвищення рівня напруги і використання ефективніших проводів також зменшують втрати. Варто зазначити, однак, що основним фактором для проектів передачі на даний час є більша потреба в передаванні на далекі відстані, що збільшує втрати.

5.10.2 Монетизація втрат грунтується на прогнозних граничних витратах протягом досліджуваного періоду. Ці граничні витрати є похідними від ринкового аналізу.
5.10.3 Визначення змін втрат електричної енергії в ОЕС України при оцінюванні проектів розвитку ММЕМ виконується на основі результатів вимірювань, отриманих від засобів обліку електричної енергії.

У випадку відсутності необхідних результатів вимірювань для точного розрахунку втрат в електричних мережах, втрати визначаються орієнтовно на основі розрахунків електричних режимів на моделях ОЕС України для певних періодів.

У разі наявності моделей для кожної з 8760 годин року зміна втрат в мережі визначається як сума втрат за кожну розрахункову годину.

У випадку, коли розрахункові моделі існують тільки для характерних режимів ОЕС України (результати замірів для 3, 13, 17 години доби зимового контрольного заміру та 3, 13, 22 години доби літнього контрольного заміру), втрати електричної енергії в мережі визначають як добуток середньоарифметичного значення втрат потужності в ОЕС України (за шість замірних годин) та кількості годин в році (8760/8784 годин).

При розрахунку змін втрат в мережі для проектів, пов’язаних з приєднанням джерел енергії, що працюють на ВДЕ, необхідно враховувати стохастичний характер роботи таких електростанцій (СЕС, ВЕС). При цьому розрахунок виконується в такому порядку: розрахунки електричних режимів виконується для встановленої потужності електростанції, втрати електричної енергії в мережі визначають як добуток середньоарифметичного значення втрат потужності в ОЕС України (за шість замірних годин), кількості годин в році (8760/8784 годин) та коефіцієнта використання встановленої потужності даного джерела енергії (використовується статистика роботи для найближчих аналогічних електростанцій).

5.10.4 Монетизація втрат електричної енергії виконується в загальному випадку відповідно до впливу втрат електричної енергії на діяльність енергопередавальної компанії:

– втрати електричної енергії купуються енергопередавальними компаніями на ринку електричної енергії за оптовою ринковою ціною – зміни втрат електричної енергії змінюють величину даних платежів;

– зміни втрат електричної енергії обумовлюють зміну обсягів переданої мережами енергопередавальної компанії електричної енергії – монетизація втрат електричної енергії визначається через тариф енергопередавальної компанії на передачу електричної енергії власними мережами.

<table>
<thead>
<tr>
<th>Показник</th>
<th>Джерело інформації</th>
<th>Одиниця виміру</th>
<th>Монетизація показника (зовнішня або ринкова)</th>
<th>Рівень узгодженості показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>Втрати</td>
<td>Мережевий аналіз</td>
<td>МВт·год</td>
<td>Грн./рік (ринкова)</td>
<td>Європейський</td>
</tr>
</tbody>
</table>

5.11 Зменшення викидів CO₂

5.11.1 Зменшуючи перевантаження, технологічні зміни можуть дозволити обладнанню з низькими викидами CO₂ виробляти більше електроенергії, таким чином замінюючи теплові електростанції з більш високими викидами диоксиду вуглецю.
Враховуючи частку викидів CO₂ на одиницю продукції для кожної електростанції та її річний фізичний обсяг виробництва, обсяг щорічних викидів на електростанціях та прилеглій території може бути розрахований зі встановленням нормативної інтенсивності викидів.

5.11.2 Обчислення впливу викидів CO₂, беручи до уваги нормативні інтенсивності викидів, враховані під час розрахунку соціально-економічного ефекту (добробуту) з проектом і без нього при розподілі навантаження між електростанціями та аналізі графіка навантаження агрегатів.

5.11.3 Монетизація викидів CO₂ ґрунтується на прогнозних цінах викидів CO₂ для електроенергетики в досліджуваному періоді часу. Ціну отримують з офіційних джерел, таких як Міжнародне енергетичне агентство (МЕА), для досліджуваного періоду.

5.11.4 У зв’язку з тим, що ціни на викиди CO₂, які включаються в собівартість генерації електричної енергії (п. 5.8), недооцінюють повні довгострокові соціальні вигоди щодо зниження викидів CO₂, для цього показника може бути виконаний аналіз чутливості, за яким викиди CO₂ будуть оцінені за довгостроковою соціальною ціною.

Щоб виконати цей аналіз чутливості без подвійного врахування відносно п. 5.8 доцільно:

– отримати обсяг приросту викидів CO₂, як описано вище;
– розглянути ціну викидів CO₂, включну у п. 5.8;
– прийняти довгострокову соціальну ціну викидів CO₂.

Монетизація чутливості підвищеним значенням викидів CO₂ визначатиметься множенням обсягу на різницю в цінах (довгострокової соціальної та включеної у п. 5.8).

<table>
<thead>
<tr>
<th>Показник</th>
<th>Джерело інформації</th>
<th>Одиниця виміру</th>
<th>Монетизація показника (зовнішня або ринкова)</th>
<th>Рівень узгодженості показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>Ринковий та мережовий аналіз (ефект заміщення)</td>
<td>Тонн</td>
<td>Ціна CO₂ отримана з витрат на виробництво (врахована в показнику «Соціально-економічний ефект (добробут)»)</td>
<td>Європейський</td>
</tr>
</tbody>
</table>

5.11.5 З метою визначення питомих показників викидів CO₂ необхідно отримати від енергогенеруючих компаній інформацію щодо абсолютних показників викидів парникових газів.
5.12 Збільшення технічної стійкості/запасу експлуатаційної безпеки системи

5.12.1 Передбачення заходів щодо збільшення стійкості при плануванні енергосистеми вносить свій внесок у надійність системи під час аварійних та екстремальних (важких) сценаріїв. Це підвищує здатність проекту бути стійким до невизначеності, відповідно до остаточної розробки та експлуатації майбутніх систем передачі.

5.12.2 Кількісна сукупність технічної стійкості/запасу експлуатаційної безпеки системи представляється за допомогою ряду ключових показників ефективності (КПЕ) та їх суми для отримання загальної оцінки проекту.

В проектах розвитку MMEM розглядають здатність проектів задовольнити наступні вимоги, встановлені у СОУ-Н ЕЕ 40.1-00100227-101 [11] (за можливості застосування), а саме:
– критерій усталеного режиму при відмовах у поєднанні з технічним обслуговуванням;
– критерій усталеного режиму у разі виняткових аварій;
– критерій лавини напруги.

5.12.3 Враховуючи високу ступінь мінливості та складності оцінювання впливу проекту на стійкість, вигода від технічної стійкості до відмов грунтується на всебічній її оцінці на основі ключових показників, прийнятих в енергетиці.

<table>
<thead>
<tr>
<th>Ключовий показник ефективності (КПЕ)</th>
<th>Оцінка (одна з 3-х: ++/+0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Здатність дослідити критерій усталеного режиму при відмовах у поєднанні з технічним обслуговуванням (за можливості застосування)</td>
<td></td>
</tr>
<tr>
<td>Здатність дослідити критерій усталеного режиму у разі виняткових аварій (за можливості застосування)</td>
<td></td>
</tr>
<tr>
<td>Здатність дослідити критерій лавини напруги (за можливості застосування)</td>
<td></td>
</tr>
</tbody>
</table>

Оцінка КПЕ визначатиметься експертами з регіональних груп на основі доказових результатів мережевого аналізу, який виконується з використанням детальних мережових моделей досліджуваного регіону. Тому КПЕ можуть підтримуватися додатковими дослідженнями, які демонструють цю вигоду.

5.12.4 Оцінка кожного КПЕ здійснюватиметься за методом TOOT для характерних режимів у відповідному році (див. п. 5.6.3). Якщо конкретний проект вносить позитивний вплив на оцінку, принаймні одного КПЕ, то він повинен набрати принаймні один «+».

Якщо проект не повністю відповідає рекомендаціям окремого КПЕ, то він не може отримати «+++».

5.12.5 Оцінювання проекту виконується наступним чином.

На основі здатності нового проекту відповідати критерію усталеного режиму при відмовах у поєднанні з технічним обслуговуванням (N-1 під час технічного обслуговування), аналізованому проекту дається оцінка КПЕ, що дорівнює 0, «+» або «+++».
Грунтуючись на здатності нового проекту відповідати критерію усталеного режиму під час виникнення виняткових аварій, аналізованому проекту дається оцінка КПЕ, що дорівнює 0, «+» або «++».

Грунтуючись на здатності нового проекту відповідати критерію лавини напрути, аналізованому проекту дається оцінка КПЕ, що дорівнює 0, «+» або «++».

Оцінки для всіх КПЕ додаються.

5.12.6 Загальна оцінка проекту визначається наступним чином:
– 0: сума оцінок КПЕ = 0;
– +: 0 < сума оцінок КПЕ ≤ 3+;
– ++: 3+ < сума оцінок КПЕ.

5.13 Відмовостійкість / гнучкість

5.13.1 Гнучкість проекту розвитку ММЕМ визначає його здатність забезпечити потреби системи в майбутніх сценаріях, які відрізняються від існуючих прогнозів. Також необхідно певніти, що проект забезпечить та пристосований до оперативної гнучкості, яка необхідна для функціонування системи передачі кожен день. Відмовостійкість і гнучкість проекту гарантуватиме, що майбутні об’єкти можуть бути повністю використані та пристосовані до специфічних потреб системи.

5.13.2 Кількісна сукупність відмовності і гнучкості проекту здійснюється за допомогою методу TOOT (п. 5.6.3), з використанням ряду ключових показників ефективності і їх суми для отримання загальної оцінки проекту.

<table>
<thead>
<tr>
<th>Ключовий показник ефективності (КПЕ)</th>
<th>Оцінка (одна з 3-х: ++/+/<)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Здатність у всіх сценаріях дотримуватися дослідження режимів за допомогою ймовірнісних або мультирежимних підходів (за можливості застосування)</td>
<td></td>
</tr>
<tr>
<td>Здатність у всіх сценаріях дотримуватися дослідження режимів без застосування деяких запланованих заходів (за можливості застосування)</td>
<td></td>
</tr>
<tr>
<td>Здатність сприянню поширенню послуг з балансування на більшу географічну територію, в тому числі між синхронними зонами</td>
<td></td>
</tr>
</tbody>
</table>

5.13.3 Враховуючи комплексність та багатоваріантність оцінки впливу проекту на гнучкість, неможливо точно обчислити чи монетизувати ефективність кожного проекту відносно гнучкості. Тому вигоди визначаються вищеведеною табличною системою відображення, яка доповнюється кваліфікованим висновком.

Оцінки за кожний КПЕ додаються в таблицю і підсумовуються, щоб дати загальну оцінку проекту. Кожному КПЕ може бути дана оцінка, що дорівнює 0, «+» або «++». Методи оцінки кожного КПЕ наводяться нижче.

5.13.4 Оцінювання проекту виконується наступним чином.

Грунтуючись на здатності нового проекту задовольняти важливі аспекти чутливості, аналізованому проекту дається оцінка КПЕ, що дорівнює 0, «+» або «++».
Грунтуючись на здатності нового проекту до відповідності вимогам із затримок введення в експлуатацію та місцевих перешкод будівництва інфраструктури, аналізованому проекту дається оцінка КПЕ, що дорівнює 0, «+» або «++».

Грунтуючись на здатності нового проекту до спільного використання послуг з балансування в ширшій географічній області (в тому числі між синхронними зонами), аналізованому проекту дається оцінка КПЕ, що дорівнює 0, «+» або «++».

Оцінки для всіх КПЕ додаються.

5.14 Загальна оцінка та аналіз чутливості
5.14.1 Загальна оцінка відображається у вигляді багатокритеріальної таблиці (додаток В). Всі показники визначені кількісно. Загальні витрати за проектом, соціально-економічний ефект (добробут) і зменшення технологічних витрат електричної енергії (енергоефективність) показані у гривнях. Інші показники відображаються за допомогою найбільш значущих одиниць, що забезпечує їх узгодженість з діючими нормативними документами галузі, і протиставленим значенням, коли потрібно уникнути подвійного обліку в гривнях. Деякі переваги, такі як зменшення викидів CO₂ та підтримка інтеграції ВДЕ, вже включені в прогнозі соціально-економічного ефекту (добробуту).

Крім того, кожний показник оцінений за допомогою багаторівневої кольорової шкали, яка відображає негативний, нейтральний, незначний позитивний, середній позитивний або високий позитивний вплив. Ця шкала дозволяє відображати результати в вигляді формату «класичної» таблиці (додаток В).

5.14.2 Ананліз чутливості виконують спеціалісти з планування розвитку ММЕМ, які стикаються з постійно зростаючою кількістю невизначеностей. На макроекономічному рівні, майбутня еволюція обсягу і виду генерації, тенденції у зростанні попиту, ціни на енергоносії та моделі обмінів між регіонами – учасниками торгів є невизначеними, і значною мірою впливують на потребу в пропускній здатності. На рівні досліджуваного регіону, місця розташування генерації та її готовності, а також розвиток і готовність мережі, також чинить значний вплив на структуру мережі і її місце розташування.

Методологія витрат і вигод вирішує ці невизначеності в декількох напрямах:
– показники вигоди загалом є передбачуваними значеннями, тобто значеннями, отриманими для низки розрахункових випадків для планування;
– проекти оцінюють як мінімум за двома ретельно продуманими макроекономічними сценаріями;
– відповідність кожного проекту у розрізі зміни різних сценаріїв або випадків оцінюється методом п. 5.13.

Додатковий аналіз чутливості (зміна окремих ключових допущень з фіксацією інших допущень) може бути виконаний, а наступні параметри можуть бути, наприклад, розглянуті для аналізу чутливості:
– прогнозування попиту;
– витрати на паливо та значення ВДЕ;
– ціна викидів CO₂;
– облікова ставка;
– дата введення в експлуатацію.

На додаток до базових значень, результати можуть бути представлені у вигляді діапазонів.
Додаток А
(довідковий)

ПРИКЛАД ГРУПУВАННЯ ПРОЕКТІВ РОЗВИТКУ МАГІСТРАЛЬНИХ І МІЖДЕРЖАВНИХ ЕЛЕКТРИЧНИХ МЕРЕЗ

А.1 В процесі групування проектів, на початку один проект визначається як «основний», який створений з метою забезпечення відповідного збільшення ПЗМ. Повний потенціал основного проекту (ΔПЗМп) складає максимальну пропускну здатність за звичайних робочих умов проекту.

Якщо для використання повного потенціалу основного проекту немає необхідності в інших проектах, тоді немає підстав для групування інших проектів; але кожний випадок потрібно розглядати окремо. Водночас, якщо для реалізації основного проекту щодо збільшення ПЗМ через відповідний перетин (міждержавний перетин) існує необхідність в одному чи декількох «супроводжуючих проектах», вони можуть бути згруповані з основним проектом у відповідності з правилами, які діють в зоні зазначеного перетину:

– проекти частково або повністю залежать один від одного (один є передумовою другого). Наприклад, щунтуючий пристрій реактивної потужності, який застосовується для запобігання недотримання верхньої границі напруги через підключення нової лінії, перетворюючої станції або високовольтної лінії постійного струму;

– вони виконуються поступово та/або повністю залежать один від одного.

А.2 В процесі групування починають з «основного проекту», який найважливіший у збільшенні ПЗМ певного перетину (міждержавного перетину), та потім групують інші проекти разом, якщо вони необхідні для повноцінної реалізації основного проекту.

Проект може бути згрупований з цим основним проектом, у випадку якщо він забезпечує реалізацію щонайменше 20% від загального потенціалу.

А.3 Приклад 1:
ΔПЗМп = 1000 МВт
ΔПЗМА (основний проект) = 600 МВт
ΔПЗМА+В (основний проект з внутрішнім підсиленням, проект В) = 1000 МВт
ΔПЗМВ,підтримка = 400 МВт (тому що без проекту В можливо отримати тільки 600 МВт з 1000 МВт)

Якщо ΔПЗМп ≥ ΔПЗМВ,підтримка ≥ 0,20 ΔПЗМп проект В може бути згрупований разом з основним проектом А.

Цей процес повторюють для всіх інших кандидатів групування та закінчують, коли всі проекти-кандидати були розглянуті. Слід зауважити, що значення кожного наступного проекту слід розглядати в розмірі його повного потенціалу.

А.4 Приклад 2:
Якщо третій проект (проект С) оцінений після того, коли проект В вже був згрупований з основним проектом (проект А), значення проекту С буде прирівняне до нуля в будь-яких випадках, тому що весь потенціал основного проекту (1000 МВт) був реалізований після його групування з проектом В.
Додаток Б
(довідковий)

БАГАТOKRITERІАЛЬНИЙ АНАЛІЗ ПОРІВНЯНО З АНАЛІЗОМ ВИТРАТ І ВИГОД

Б.1 Вимоги до будь-якого методу оцінювання проекту:
– прозорість: метод оцінювання має забезпечувати прозорість основних допущень, параметрів і значень;
– повнота: всі відповідні показники (які представляють енергетичну політику ЄС, які не передбачено відповідно до критеріїв, зазначених у додатках IV і V Регламенту (ЄС) № 347/2013), мають бути включені до системи оцінювання;
– довіра / протиставність: якщо критерій є зваженим, то його числове значення повинно бути приведено з надійного джерела інформації (міжнародного або європейського);

Б.2 Межі «чистого» аналізу витрат і вигод:
– єдиний критерій дає менше інформації (і є меншу прозорим) порівняно з багатокритеріальною інформаційною системою. Крім того, він не дуже добре адаптований до багатостороннього керування, як те передбачено Регламентом (ЄС) № 347/2013 [17], де учасникам буде потрібна інформація для кожного з критеріїв, щоб приймати спільні рішення;
– «чистий» аналіз витрат і вигод не може охопити всі критерії, зазначені в додатках IV і V Регламенту (ЄС) № 347/2013, оскільки деякі з вигод важко монетизувати:
– це випадок малоїмовірних подій – високий вплив / мала ймовірність, таких як «стихійні лиха і стійкість до зміни клімату» (множення низьких ймовірностей на дуже тяжкі наслідки дає невелике значення);
– інші вигоди, такі як «оперативна гнучкість», не мають сьогодні монетизації (вони характеризують відповідність відмовостійкість і гнучкість, але не визначені грошовим еквівалентом);
– деякі вигоди мають протиставні значення. Це випадок, наприклад, вартості втраченої навантаження, яка залежить від структури споживання (третинний сектор порівняно з промисловістю, важливість електроенергії в економіці тощо);
– деякі вигоди (наприклад, викиди CO₂) вже є включені (наприклад, у соціально-економічному ефекті (добробуту)). Відображення значення показника з одиницею виміру в тоннах забезпечує додаткову інформацію та запобігає подвійному врахуванню.

Б.3 На відміну від аналізу витрат і вигод, який зосереджується на унікальному критерії (максимізація соціально-економічного ефекту (добробуту)), багатокритеріальний аналіз – це інструмент для вирішення безлічі різних завдань, які не можуть бути агреговані через тільки ціні і зважений добробут, як у стандартному аналізі витрат і вигод. Багатокритеріальний, тобто багатоцільовий, аналіз може бути корисним, коли деякі завдання неможливо розв’язати іншими методами, і їх слід розглядати як додаток до аналізу витрат і вигод.

Б.4 ENTSO-E віддає перевагу комбінованому багатокритеріальному аналізу витрат і вигод, що є добрі адаптованим до запропонованого управління і дозволяє проводити оцінювання на основі найбільш розповсюджених показників, в тому числі вартісних показників, визначених в грошовому еквіваленті, якщо відповідне числове значення показника існує на рівні ЄС. Такий підхід дозволяє забезпечити рівномірне оцінювання проектів за всіма критеріями (наприклад, МВт·год для ВДЕ, якщо пріоритетом регіону є підтримка інтеграції ВДЕ).
Додаток В
(довідковий)
ПРИКЛАД ПІДСУМКОВОЇ ТАБЛИЦІ ОЦІНЮВАННЯ ПРОЕКТІВ РОЗВИТКУ МАГІСТРАЛЬНИХ
І МІЖДЕРЖАВНИХ ЕЛЕКТРИЧНИХ МЕРЕЖ

<table>
<thead>
<tr>
<th>Показник</th>
<th>Результати аналізу витрат і вигод, що не залежать від сценарію розвитку</th>
<th>Результати аналізу витрат і вигод для кожного сценарію розвитку</th>
<th>Результати аналізу витрат і вигод, що не залежать від сценарію розвитку</th>
</tr>
</thead>
<tbody>
<tr>
<td>Показник</td>
<td>Результати оцінювання проекту (групи проектів)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Показник</td>
<td>Результати аналізу витрат і вигод, що не залежать від сценарію розвитку</td>
<td>Результати аналізу витрат і вигод для кожного сценарію розвитку</td>
<td>Результати аналізу витрат і вигод, що не залежать від сценарію розвитку</td>
</tr>
<tr>
<td>Показник</td>
<td>Результати оцінювання проекту (групи проектів)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Показник | Результати аналізу витрат і вигод, що не залежать від сценарію розвитку | Результати аналізу витрат і вигод для кожного сценарію розвитку | Результ
Додаток Г
(довідковий)

ОЦІНКА ВПЛИВУ НА НАВКОЛИШНЄ СЕРЕДОВИЩЕ І СОЦІАЛЬНОГО ВПЛИВУ

Г.1 Як правило, перший захід для боротьби з можливими негативними екологічними і соціальними наслідками проекту є недопущення впливу (наприклад – прийняття відповідних рішень щодо траси ЛЕП) скрізь, де це можливо. Мінімізація впливу забезпечується через заходи пом’ятення, а в деяких випадках – компенсаційні заходи (наприклад – створення ареалу проживання диких тварин тощо). У випадку, коли планування проекту перебуває на стадії розробки проектно-кошторисної документації, вартість заходів з охорони навколишнього середовища може бути оцінена точно, і включатися в загальні витрати за проектом, перелічені в п. 5.4.1.

Г.2 При плануванні проекту не завжди можливо повністю пом’ятити деякі негативні наслідки, тому показники «впливу на навколишнє середовище» і «соціального впливу» використовують для таких цілей:

– визначити, де можуть бути необхідні додаткові витрати, щоб уникнути, пом’ятити та / або компенсувати вплив, але де вони ще не можуть бути оцінені з достатньою точністю відносно витрат, які мають бути включені в загальні витрати за проектом;

– вказати залишковий вплив на навколишнє середовище і соціальний вплив проектів, тобто вплив, який не може бути повністю пом’ятити в остаточній версії проекту, і не може бути об’єктивно монетизований.

Г.3 На ранніх стадіях проекту може бути не ясно, чи можливі певні наслідки, і чи будуть вони в кінцевому підсумку пом’ятені. Такі можливі наслідки включають і позначають як потенційні впливи проекту.

Коли немає достатньої інформації, щоб указати потенційні впливи проекту, презентацію результатів проекту виконують таким чином, щоби «немає даних» не можна було сплутати з «немає впливу».

Г.4 Міра для потенційних впливів проекту визначена кількістю кілометрів нової ПЛ або КЛ (підземної/підводної), які, можливо, доведеться розташовувати в зоні, чутливій для їхнього характеру, а саме: вплив на навколишнє середовище, ландшафтене або соціальне значення.
Прив’язування позначення кольором виключно на основі поняття «певна кількість кілометрів» означатиме, що «остаточне рішення було прийняте у відносно екологічної і соціальної чутливості проекту, який не був би точним, оскільки кількість кілометрів лінії, що перетинають чутливу зону, є лише одним з аспектів істинних екологічних і соціальних наслідків проекту.

Г.5 Вплив на навколишнє середовище визначається чутливістю щодо біологічної варіативності при планованому розташуванні об’єктів:

– в охоронних зонах у відповідності з національними законами та міжнародними конвенціями та угодами, які ратифіковані Україною, щодо охорони навколишнього середовища;

– на землях в національних парках;

– на земельних ділянках об’єктів природної спадщини.

Г.6 Соціальний вплив визначається:

– чутливістю щодо щільності населення, а саме розташуванням планованих
об’єктів на землях поблизу густонаселених районів, де щільність населення перевершує середні національні показники;
– чутливістю щодо ландшафту, а саме розташуванням в охоронних зонах об’єктів світової спадщини та на територіях, захищених національним законодавством.

Г.7 Для оцінювання залишкового впливу на навколишнє середовище використовують:
– мапу міграції птахів на території України, розміщену на офіційному сайті Українського товариства охорони птахів (ТОП) (офіційний сайт – http://pernatidruzi.org.ua) (Г.9);
– мапу зон проживання крупних птахів на території України (Г.10);
– мапи територій природно-заповідного фонду, розміщені на офіційному сайті Природно-заповідного фонду України, що знаходиться під державним управлінням Міністерства екології та природних ресурсів України (офіційний сайт – http://pzf.land.kiev.ua) (перелік природних та біосферних заповідників див. Г.11);

Система оцінювання для залишкового впливу на навколишнє середовище наведена в таблиці Г.1

Таблиця Г.1 – Система оцінювання для залишкового впливу на навколишнє середовище

<table>
<thead>
<tr>
<th>Проект</th>
<th>Етап</th>
<th>Вплив (потенційно перетинає екологічно чутливу зону (кількість км))</th>
<th>Тип чутливості</th>
<th>Посилання на додаткову інформацію</th>
</tr>
</thead>
<tbody>
<tr>
<td>А</td>
<td>Планування</td>
<td>Так а) 50–75 км; б) 30–40 км</td>
<td>а) міграція птахів; б) охорона територій та об’єктів природно-заповідного фонду</td>
<td>а) Закон України «Про тваринний світ» ст.39; б) Закон України «Про охорону навколишнього природного середовища» ст.5</td>
</tr>
<tr>
<td>Б</td>
<td>Проектування і отримання дозволів</td>
<td>Ні</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>В</td>
<td>Планування</td>
<td>Так (20 км)</td>
<td>Охорона територій та об’єктів природно-заповідного фонду</td>
<td>Закон України «Про охорону навколишнього природного середовища»</td>
</tr>
<tr>
<td>Г</td>
<td>На розгляді</td>
<td>Не визначено</td>
<td>Не визначено</td>
<td>–</td>
</tr>
</tbody>
</table>

Eman – вказує на етап розробки проекту. Це є важливим свідченням тієї міри, якою вплив на навколишнє середовище може бути виміряний в певний момент.

Основне поняття – кількість км, які, можливо, пройдуть у чутливих зонах. Зона може бути чутливою до близької інфраструктури через вплив електричного потенціалу, який ця інфраструктура має на природу і біологічне різноманіття.

Тип чутливості – визначає, чому цю зону ввахають чутливою.
Г.8 Для оцінювання залишкового соціального впливу використовують:
– мапу щільності населення по регіонах України, розміщену на офіційному сайті державної служби статистики (офіційний сайт – http://www.ukrstat.gov.ua) (Г.13);
– мапу розташування пам’яток архітектури, історії і культури України, розміщену на офіційному сайті міністерства культури (офіційний сайт – http://mincult.kmu.gov.ua) (Г.14);
Система оцінювання для залишкового соціального впливу наведена в таблиці Г.2

<table>
<thead>
<tr>
<th>Проект</th>
<th>Етап</th>
<th>Вплив – перетинає густонаселену зону (кількість км)</th>
<th>Тип чутливості</th>
<th>Посилання на додаткову інформацію</th>
</tr>
</thead>
<tbody>
<tr>
<td>А</td>
<td>Проектування і отримання дозволів</td>
<td>Так (20–40 км)</td>
<td>Густонаселена зона</td>
<td>–</td>
</tr>
<tr>
<td>Б</td>
<td>Планування</td>
<td>Так (100 км)</td>
<td>Зони охоронюваного ландшафту</td>
<td>Закон України «Про охорону культурної спадщини» ст.32</td>
</tr>
<tr>
<td>В</td>
<td>Планування</td>
<td>Ні</td>
<td>Підводний кабель</td>
<td>–</td>
</tr>
<tr>
<td>Г</td>
<td>На стадії будівництва</td>
<td>Так (50 км)</td>
<td>Густонаселена зона, ПЛ</td>
<td>–</td>
</tr>
</tbody>
</table>

Етап – вказує на етап розробки проекту. Це є важливим свідченням тієї міри, якою соціальний вплив може бути виміряний в певний момент.

Основне поняття – кількість км, які, можливо, пройдуть у чутливих зонах. Зона може бути чутливою до близької інфраструктури, якщо вона щільно заселена або захищена завдяки своїй ландшафтній цінності.

Тип чутливості – визначає, чому цю зону вважають чутливою.
Г.9 Мапа міграції птахів на території України

Масштаб 1:8 000 000

Шляхи міграції

- червоний: причорноморсько-азовський (мартин, крячки)
- зелений: дніпровський (сірий журавель, чернеть морська та чубата)
- жовтий: широкофронтальний меридіанний (сіра чапля, білий та чорний лелека, чирок)
- синій: поліський північноширотний (білолоба гуска, лебідь-шпун, крижень)
- чорний: місця зимівлі чайок, лебедів, гусей, качок
- червоний крапля: пункти масового кільцевання птахів
- червоний трикутник: пункти спостереження за міграціями птахів
- шарообразний крапля: водно-болотні угіддя міжнародного значення
Г.10 Мапа зон проживання великих птахів на території України
Г.11 Перелік природних та біосферних заповідників

<table>
<thead>
<tr>
<th>Назва</th>
<th>Рік</th>
<th>Площа (га)</th>
<th>Регіон</th>
</tr>
</thead>
<tbody>
<tr>
<td>Природні заповідники</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дніпровсько-Орільський природний заповідник</td>
<td>1990</td>
<td>3 766</td>
<td>Дніпропетровська область</td>
</tr>
<tr>
<td>Древлянський природний заповідник</td>
<td>2009</td>
<td>30 873</td>
<td>Житомирська область</td>
</tr>
<tr>
<td>Казантипський природний заповідник</td>
<td>1998</td>
<td>450</td>
<td>Автономна Республіка Крим</td>
</tr>
<tr>
<td>Канівський природний заповідник</td>
<td>1923</td>
<td>2 027</td>
<td>Черкаська область</td>
</tr>
<tr>
<td>Карадазький природний заповідник</td>
<td>1979</td>
<td>2 872</td>
<td>Автономна Республіка Крим</td>
</tr>
<tr>
<td>Кримський природний заповідник Філії: «Лебедині острови»</td>
<td>1923</td>
<td>44 175</td>
<td>Автономна Республіка Крим</td>
</tr>
<tr>
<td>Луганський природний заповідник Філії: Станично-Луганський заповідник, «Програльський степ», «Стрільницький степ»</td>
<td>1968</td>
<td>2 122</td>
<td>Луганська область</td>
</tr>
<tr>
<td>Опукський природний заповідник</td>
<td>1998</td>
<td>1 592</td>
<td>Автономна Республіка Крим</td>
</tr>
<tr>
<td>Поліський природний заповідник</td>
<td>1968</td>
<td>20 104</td>
<td>Житомирська область</td>
</tr>
<tr>
<td>Природний заповідник «Горгані»</td>
<td>1996</td>
<td>5 344</td>
<td>Івано-Франківська область</td>
</tr>
<tr>
<td>Природний заповідник «Медобори» Філії: Кременецькі гори</td>
<td>1990</td>
<td>10 521</td>
<td>Тернопільська область</td>
</tr>
<tr>
<td>Природний заповідник «Мис Мартень»</td>
<td>1973</td>
<td>240</td>
<td>Автономна Республіка Крим</td>
</tr>
<tr>
<td>Природний заповідник «Михайлівська цілина»</td>
<td>2009</td>
<td>883</td>
<td>Сумська область</td>
</tr>
<tr>
<td>Природний заповідник «Розточчя»</td>
<td>1984</td>
<td>2 085</td>
<td>Львівська область</td>
</tr>
<tr>
<td>Природний заповідник «Єланецький степ»</td>
<td>1996</td>
<td>1 676</td>
<td>Миколаївська область</td>
</tr>
<tr>
<td>Рівненський природний заповідник</td>
<td>1999</td>
<td>42 289</td>
<td>Рівненська область</td>
</tr>
<tr>
<td>Український степовий природний заповідник Філії: «Хомутівський степ», «Кам’яні могили», «Крейдова флора»</td>
<td>1961</td>
<td>3 336</td>
<td>Донецька область</td>
</tr>
<tr>
<td>Черемський природний заповідник</td>
<td>2001</td>
<td>2 976</td>
<td>Волинська область</td>
</tr>
<tr>
<td>Ялтинський гірсько-лісовий природний заповідник</td>
<td>1973</td>
<td>14 523</td>
<td>Автономна Республіка Крим</td>
</tr>
<tr>
<td>Біосферні заповідники</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Асканія-Нова ім Ф. Е. Фальц-Фейна</td>
<td>1898</td>
<td>33 307</td>
<td>Херсонська область</td>
</tr>
<tr>
<td>Дунайський біосферний заповідник</td>
<td>1981</td>
<td>50 252</td>
<td>Одеська область</td>
</tr>
<tr>
<td>Карпатський біосферний заповідник</td>
<td>1968</td>
<td>57 880</td>
<td>Закарпатська область</td>
</tr>
<tr>
<td>Чорноморський біосферний заповідник</td>
<td>1927</td>
<td>89 129</td>
<td>Херсонська, Миколаївська області</td>
</tr>
</tbody>
</table>
Г.12 Перелік об’єктів природно-заповідного фонду, які передбачається створити відповідно до Загальнодержавної програми формування національної екологічної мережі України на 2000–2015 роки

<table>
<thead>
<tr>
<th>Назва об’єкта природно-заповідного фонду</th>
<th>Площа, гектарів</th>
</tr>
</thead>
<tbody>
<tr>
<td>Национальні природні парки, які передбачається створити</td>
<td></td>
</tr>
<tr>
<td>Приазовський</td>
<td>20 тис</td>
</tr>
<tr>
<td>Меотида</td>
<td>15 тис</td>
</tr>
<tr>
<td>Сианський</td>
<td>195 тис</td>
</tr>
<tr>
<td>Прип’ять-Стохід</td>
<td>50 тис</td>
</tr>
<tr>
<td>Свидовецький</td>
<td>15 тис</td>
</tr>
<tr>
<td>Галицький</td>
<td>14 тис</td>
</tr>
<tr>
<td>Переяслав-Хмельницький,</td>
<td>10 тис</td>
</tr>
<tr>
<td>Гуцульщина</td>
<td>50 тис</td>
</tr>
<tr>
<td>Дністровський каньйон</td>
<td>10 тис</td>
</tr>
<tr>
<td>Джарилгач</td>
<td>10 тис</td>
</tr>
<tr>
<td>Тростянецько-Ворсклинський</td>
<td>40 тис</td>
</tr>
<tr>
<td>Сіверсько-Донецький</td>
<td>20 тис</td>
</tr>
<tr>
<td>Гранітно-степове Побужжя</td>
<td>5 тис</td>
</tr>
<tr>
<td>Великий Луг</td>
<td>40 тис</td>
</tr>
<tr>
<td>Нижньосусловський</td>
<td>17 тис</td>
</tr>
<tr>
<td>Центрально-Подільський</td>
<td>15 тис</td>
</tr>
<tr>
<td>Самарський бір</td>
<td>20 тис</td>
</tr>
<tr>
<td>Перекарпатський</td>
<td>20 тис</td>
</tr>
<tr>
<td>Диканьківський</td>
<td>15 тис</td>
</tr>
<tr>
<td>Слобожанський</td>
<td>10 тис</td>
</tr>
<tr>
<td>Кінбурська коса</td>
<td>10 тис</td>
</tr>
<tr>
<td>Трахтемирівський</td>
<td>10 тис</td>
</tr>
<tr>
<td>Нижньодніпропетровський</td>
<td>50 тис</td>
</tr>
<tr>
<td>Кримський</td>
<td>25 тис</td>
</tr>
<tr>
<td>Савранський ліс</td>
<td>10 тис</td>
</tr>
<tr>
<td>Чатир-Даг</td>
<td>5 тис</td>
</tr>
<tr>
<td>Саки</td>
<td>10 тис</td>
</tr>
<tr>
<td>Велике філофорне поле Зернова</td>
<td>100 тис</td>
</tr>
<tr>
<td>Мале філофорне поле</td>
<td>30 тис</td>
</tr>
<tr>
<td>Біосферні заповідники, які передбачається створити</td>
<td></td>
</tr>
<tr>
<td>Західне Полісся</td>
<td>40 тис</td>
</tr>
<tr>
<td>Східні Карпати</td>
<td>50 тис</td>
</tr>
<tr>
<td>Кримський</td>
<td>40 тис</td>
</tr>
<tr>
<td>Розточанський</td>
<td>25 тис</td>
</tr>
<tr>
<td>Поліський</td>
<td>50 тис</td>
</tr>
<tr>
<td>Український лісостеповий</td>
<td>50 тис</td>
</tr>
<tr>
<td>Донецький кряж</td>
<td>20 тис</td>
</tr>
<tr>
<td>Природні заповідники, межі яких розширюються</td>
<td></td>
</tr>
<tr>
<td>Медобори</td>
<td>2 тис</td>
</tr>
<tr>
<td>Поліський</td>
<td>14 тис</td>
</tr>
<tr>
<td>Дніпровсько-Орільський,</td>
<td>505 тис</td>
</tr>
<tr>
<td>Біосферні заповідники, межі яких розширюються</td>
<td></td>
</tr>
<tr>
<td>Карпатський</td>
<td>10 тис</td>
</tr>
<tr>
<td>Дунайський</td>
<td>20 тис</td>
</tr>
<tr>
<td>Чорноморський</td>
<td>50 тис</td>
</tr>
<tr>
<td>Національні природні парки, межі яких розширюються</td>
<td></td>
</tr>
<tr>
<td>Вижницький</td>
<td>3 тис</td>
</tr>
<tr>
<td>Синевир</td>
<td>3 тис</td>
</tr>
<tr>
<td>Подільські Товтри,</td>
<td>20 тис</td>
</tr>
<tr>
<td>Ужанський,</td>
<td>10 тис</td>
</tr>
<tr>
<td>Святі Гори</td>
<td>10 тис</td>
</tr>
</tbody>
</table>
Г.13 Мапа щільності населення по регіонах України

Щільність населення на початок 2014 року по регіонах України, осіб на 1 кв. км
Г.14 Мапа розташування пам’яток архітектури, історії і культури України

Г.15 Мапа розташування об’єктів світової спадщини України

Об’єкти Світової спадщини на карті України:
1 — Церква Роду (просвітницький інститут); 2 — Церква святого Ільдара; 3 — Церква Трійці (церква святого Ільдара); 4 — Церква святителя Юрія.
Додаток Д
(довідковий)

ВИЗНАЧЕННЯ ОЧІКУВАНОГО НЕДОВІДПУСКУ ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ ТА ВТРАЧЕНОГО НАВАНТАЖЕНЯ

Д.1 Ефект від покращення надійності електропостачання, яке забезпечується реалізацією заходів з розвитку мережі, розраховується як різниця між ситуаціями з реалізацією заходів і без них, з визначеним показником, яким є або EENS або LOLE.

Д.2 При обґрунтуванні проектів будівництва ЛЕП або розширення ПС ММЕМ показником надійності електропостачання є EENS, який, згідно з СОУ-Н МПЕ 40.1.08.551 [15] враховує недовідпуск як під час перерв у електропостачанні, так і під час обмежень, викликаних порушенням нормального режиму.

Д.3 Очікуваний недовідпуск електричної енергії в енерговузлі ΔW (МВт·год), надійність роботи якого має бути підвищена шляхом введення в роботу i-го планованого елементу мережі (з урахуванням пропускної здатності елементу), обчислюють за формулою:

$$\Delta W_i = \omega \cdot \Delta P_{\text{max}} \cdot K_{\text{max}} \cdot \tau_n \cdot q,$$

де ω – параметр потоку відмов елементу мережі, рік$^{-1}$;
τ_n – середній час відновлення, годин;
K_{max} – коефіцієнт використання максимуму навантаження;
q – коефіцієнт простою елементу;
ΔP_{max} – зниження максимуму навантаження, МВт.

Коефіцієнт використання максимуму навантаження K_{max} визначають відношенням середньої активної потужності енерговузла до встановленої активної (номінальної) потужності за формулою:

$$K_{\text{max}} = \frac{P_a}{P_n},$$

(Д.2)

Коефіцієнт простою елементу визначається тривалістю капітальних ремонтів за час його експлуатації за формулою:

$$q = \lambda_p \cdot \tau_{p,k},$$

(Д.3)

Д.4 Усереднені показники надійності трансформаторів наведені в табліці Д.1 для всіх типів трансформаторів незалежно від їх призначення. Як основні показники надійності трансформаторів прийняті: параметр потоку відмов ω; середній час відновлення τ_n; частота поточних ремонтів λ_p; тривалість поточного ремонту $\tau_{p,k}$. Показники ω та τ_n отримані зі статистичних даних. Показники λ_p та $\tau_{p,k}$, наведені для поточних ремонтів, що виконуються відповідно до вимог ГКД 34.20.507 [7] та ГКД 34.20.601 [8].
Таблиця Д.1 – Показники надійності трансформаторів

<table>
<thead>
<tr>
<th>Номінальна потужність, МВА</th>
<th>(U_n, \text{kB})</th>
<th>(\omega, \text{рiк}^{-1})</th>
<th>(\tau_e, \text{годин})</th>
<th>(\lambda_n, \text{рiк}^{-1})</th>
<th>(\tau_{p.n}, \text{годин})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–80</td>
<td>110 (150)</td>
<td>0,014</td>
<td>70</td>
<td>0,75</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>0,035</td>
<td>60</td>
<td>0,75</td>
<td>28</td>
</tr>
<tr>
<td>Понад 80</td>
<td>110–150</td>
<td>0,075</td>
<td>95</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>0,025</td>
<td>60</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>0,053</td>
<td>45</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>500–50</td>
<td>0,024*</td>
<td>330</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,050**</td>
</tr>
</tbody>
</table>

Примітка. Параметр \(\tau_{p.n} \) – в розрахунку на один трансформатор.

*Для однофазних трансформаторів

**Для трифазних трансформаторів

Д.5 Як основні показники надійності збірних шин, наведені в табліці Д.2, прийняті: параметр потоку відмов \(\omega \); середній час відновлення \(\tau_e \); частота капітальних ремонтів \(\lambda_c \); тривалість капітального ремонту \(\tau_{p.k} \). При визначенні параметра потоку відмов враховувалися відомі шин та електричних апаратів, приєднаних безпосередньо до шин (без роз’єднувачів та запобіжників), та не враховувалися відомі при відключенні КЗ на лініях. Показник \(\tau_e \) розрахований як середній час відновлення однієї секції шин. Значення \(\tau_e \) приймається однаковим для усіх схем з’єднання РУ. Тривалість капітального ремонту надана в розрахунку на одне приєднання.

Таблиця Д.2 – Показники надійності збірних шин

<table>
<thead>
<tr>
<th>(U_n, \text{kB})</th>
<th>(\omega, \text{рiк}^{-1})</th>
<th>(\tau_e, \text{годин})</th>
<th>(\tau_{p.k}, \text{годин})</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 (150)</td>
<td>0,016</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>220</td>
<td>0,013</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>330</td>
<td>0,013</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>500</td>
<td>0,013</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>750</td>
<td>0,010</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Примітка 1. \(\lambda_c = 0,166 \text{ рiк}^{-1} \).

Примітка 2. Параметри \(\omega, \lambda_c \), та \(\tau_{p.k} \) – в розрахунку на приєднання

Д.6 Як основні показники надійності повітряних ліній електропередавання, наведені в табліці Д.3, прийняті: параметр потоку відмов \(\omega \); середній час відновлення \(\tau_e \); середня кількість навмисних відключень \(\lambda_n \); середній час простою під час навмисного відключення \(\tau_{n} \). Показник \(\omega \) та \(\tau_e \) наведені для стійких відмов. Для визначення параметра потоку відмов ПЛ 35–750 кВ з урахуванням нестійких відмов \(\left(\omega \right) \) значення параметрів \(\omega \), наведені в табліці Д.3 слід помножити на коефіцієнти врахування нестійких відмов, наведені в табліці Д.4 \(\left(\omega_{ct} \right) \) параметр потоку стійких відмов).
Таблиця Д.3 – Показники надійності повітряних ліній електропередавання

<table>
<thead>
<tr>
<th>U_n, кВ</th>
<th>Опори</th>
<th>Кількість кіл</th>
<th>ω, рік$^{-1}$</th>
<th>τ, годин</th>
<th>λ_n, рік$^{-1}$</th>
<th>τ_n, годин</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 (150) металеві</td>
<td>1</td>
<td>0,89</td>
<td>8,8</td>
<td>2,1</td>
<td>14,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,16/0,12</td>
<td>6,9/10,3</td>
<td>3,8/0,4</td>
<td>14,8/19</td>
<td></td>
</tr>
<tr>
<td>220 металеві</td>
<td>1</td>
<td>0,34</td>
<td>14,3</td>
<td>2,8</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,43/0,03</td>
<td>11,2/14,9</td>
<td>3,3/0,5</td>
<td>17,4/24</td>
<td></td>
</tr>
<tr>
<td>з/б</td>
<td>1</td>
<td>0,26</td>
<td>9,3</td>
<td>1,8</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,28/0,03</td>
<td>8,6/7,6</td>
<td>1,1/0,3</td>
<td>17/9,4</td>
<td></td>
</tr>
<tr>
<td>330 металеві</td>
<td>1</td>
<td>0,48</td>
<td>10,8</td>
<td>3,0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,79/0,09</td>
<td>9,4/4,9</td>
<td>7,3/0,3</td>
<td>15/14,1</td>
<td></td>
</tr>
<tr>
<td>з/б</td>
<td>1</td>
<td>0,3</td>
<td>15,3</td>
<td>2,9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>500 металеві</td>
<td>1</td>
<td>0,24</td>
<td>14,3</td>
<td>1,6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,26</td>
<td>13</td>
<td>1,7</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>з/б</td>
<td>1</td>
<td>0,2</td>
<td>20</td>
<td>0,17</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>750 металеві</td>
<td>1</td>
<td>0,2</td>
<td>20</td>
<td>0,17</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Примітка 1. Параметри ω – в розрахунку на 100 км, інші – на одну лінію.

Примітка 2. У чисельнику – для відключення одного кола, а у знаменнику – для відключення двох кіл

Таблиця Д.4 – Коефіцієнт врахування нестійких відмов

<table>
<thead>
<tr>
<th>U_n, кВ</th>
<th>$\omega_\chi/\omega_\text{cm}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 (150)</td>
<td>13,0</td>
</tr>
<tr>
<td>220–330</td>
<td>10</td>
</tr>
<tr>
<td>500–750</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Д.7 Результати розрахунку для варіантів, що розглядаються, зводять у таблицю Д.5 і порівнюють, при цьому враховують обсяг капіталовкладень в реалізацію кожного з запропонованих варіантів.

Таблиця Д.5 – Характеристики варіантів мережі

<table>
<thead>
<tr>
<th>Варіант</th>
<th>Зниження максимуму навантаження, МВт</th>
<th>Очікуваний недовідпуск електричної енергії, МВт·год</th>
<th>Капіталовкладення, млн. грн.</th>
</tr>
</thead>
<tbody>
<tr>
<td>А</td>
<td>100</td>
<td>–</td>
<td>1500</td>
</tr>
<tr>
<td>Б</td>
<td>20</td>
<td>25000</td>
<td>7,5</td>
</tr>
</tbody>
</table>
Д.8 Вартість втраченого навантаження має бути мірою вартості недовідпущеної енергії (енергія, яка була б поставлена, якби не було ніяких відключень) для споживачів. Вона, як правило, вимірюється в грн./кВт·год. Вона відображає середню вартість аварійного відключення за кВт·год (тривале переривання електропостачання) або кВт (зниження напруги, короткочасні переривання електропостачання).

Рівень вартості втраченого навантаження має відображати реальну вартість відключень для споживачів, таким чином забезпечуючи точну основу для інвестиційних рішень. Занадто високий рівень вартості втраченого навантаження може призвести до надмірної інвестиції; і навпаки, якщо значення занадто низьке, то це може призвести до недостатньої надійності електропостачання. Існує оптимальний рівень, що виражає готовність споживачів оплачувати надійність електропостачання. Вартість втраченого навантаження має дозволити досягнути правильного балансу між посиленнями передачі (які мають вартість, відображену в тарифі) і витрати простою. Посилення передачі сприяють удосконаленню безпеки і якості електропостачання, зменшуючи ймовірність і тяжкість відключень, і, таким чином, витрати для споживачів.

Енергетичні показники, виражені в МВт·год, як значення безпеки енергопостачання при аналізі витрат та вигод проектів розвитку мереж, дозволяє усім зацікавленим сторонам монетизувати показники, використовуючи наявну вартість втраченого навантаження. Однак, для реалізації цього слід провести загальнонаціональні дослідження зоцінювання рівня витрат зв’язку з перериваннями електропостачання і різкими відхиленнями напруги, що має бути попередньою умовою для прийняття вартості втраченого навантаження для несуперечливого оцінювання заходів у Плані розвитку системи передачі на наступні 10 років.
Додаток Е
(довідковий)

ПРИКЛАД ВИКОНАННЯ ЕЛЕКТРИЧНИХ РОЗРАХУНКІВ, ЯКІ МОДЕЛЮЮТЬ СИТУАЦІЮ ВІДКЛЮЧЕННЯ ОДНОГО З АВТОТРАНСФОРМАТОРІВ НА ПІДСТАНЦІЇ

Е.1 Оцінювання надійності електропостачання, використовуючи електричні розрахунки за умови відключення одного з автотрансформаторів (АТ) на ПС 330 кВ.

Е.2 За результатами виконаних електричних розрахунків, що моделюють ситуацію відключення одного з АТ на ПС 330 кВ, отримуємо:

а) зростання втрат за рахунок реалізації мережевих заходів з перенесення розрізів та замикання транзитів 110 кВ – на 4,1 МВт за годину (в період максимуму навантажень, що тривають 5 годин на добу) та на 1,2 МВт за годину – весь інший час протягом доби. Приймаючи до уваги той факт, що з моменту ушкодження АТ і до його заміни пройде 6 місяців (180 днів), необхідних для заводського виробництва АТ, зростання втрат електричної енергії в мережі складе:

(4,1·5+1,2·19)·180=7 794 МВт·год;

б) зростання монетизованих витрат, враховуючи ціну купівлі електроенергії з Оптового ринку електроенергії постачальниками електроенергії за регульованим тарифом (1068,54 грн./МВт·год станом на 01.05.2017 р.), складе:

7 794·1068,54=8,3 млн. грн.;

в) в післяаварійній схемі роботи мережі, перевантаження АТ, який залишиться в роботі, становитиме приблизно 15%. Для усунення такого перевантаження виникає необхідність завантажити сусідню ТЕЦ на 360 МВт. Такий захід потребуватиме 30 тис. м³ за годину (роздрібна вартість 8 грн./м³) протягом 5–6 годин максимальних навантажень на добу. Отже, додаткові витрати на прибрання гazu становитимуть:

30 000·8·5·180=216 млн. грн.;

г) якщо не навантажувати ТЕЦ, в періоди максимальних навантажень необхідно обмежувати споживання вузла ПС 330 кВ на величину до 30 МВт (до номінального завантаження АТ). Монетизований недовідпуск електричної енергії споживачам (роздрібна ціна продажу 1 МВт·год становить 1800 грн.) за період заміни АТ становитиме:

30·5·180·1800=48,6 млн. грн.

Розрахунки проведені для періоду осіньньо-зимового максимуму (жовтень – березень). Якщо розглядати літній період, то показники в пунктах а), б) і г) зменшаться на 20–30%, а показники пункту в) залишаться майже незмінними, оскільки впливу на ТЕЦ працює один блок потужністю 100 МВт, чого недостатньо для резервування навантаження вузла ПС 330 кВ, у зв’язку з чим виникне необхідність додатково задіяти блок 100 МВт.
Додаток Ж
(довідковий)

АНАЛІЗ ЗАГАЛЬНОГО НАДЛИШКУ

Ж.1 Проект із зміною ПЗМ між двома регіонами – учасниками торгів із відмінністю в тарифах дозволить виробникам в регіоні – учаснику торгів з низькими цінами постачати електроенергію в регіон торгів з високими цінами.

В умовах ідеального ринку, ринкова ціна визначається на перетині кривих попиту і пропозиції.

Нижче наведений приклад регіонів експорту та імпорту, між якими немає достатньої пропускної здатності міжсистемної лінії або вона перевантажена (рисунок Ж.1) та з новим проектом, що збільшує ПЗМ між двома регіонами (рисунок Ж.2).

Рисунок Ж.1 – Приклад регіонів експорту та імпорту, між якими немає пропускної здатності міжсистемної лінії або вона перевантажена

Рисунок Ж.2 – Приклад регіонів експорту та імпорту з новим проектом, що збільшує ПЗМ між двома регіонами

Ж.2 Новий проект змінює ціну в обох регіонах – учасниках торгів, що призводить до зміни в надлишках споживання і виробництва в регіонах експорту та імпорту. Крім того, доходи підприємства, що здійснює передачу електричної енергії
мережами, відображатимуть зміни в сумарній платі за перевантаження, якщо така введена, на всіх перетинах між регіонами експорту та імпорту.

Ж.3 Вигода проєкту може бути виміряна через динаміку соціально-економічного ефекту (добробуту). Динаміка ефекту (добробуту) розраховується додаванням змін в надлишку споживача і виробника та сумарній платі за перевантаження.

Повну вигоду для періоду, що розглядається, обчислюють підсумовуванням вигоди впродовж всіх годин року.

Ж.4 Короткостроковий попит можна розглядати як незмінний, тому що споживачі безпосередньо не реагують в реальному часі на ринкові ціни.

Для незмінного попиту зміна у надлишку споживача (рис. Ж.3) може бути обчислена як зміна в цінах, помножена на споживання електроенергії.

Рисунок Ж.3 – Зміна у надлишку споживача

Зміна у надлишку виробника (рис. Ж.4) може бути обчисленна як різниця між чистим дохідом від виробництва товарної продукції та витратами на її виробництво (собівартість товарної продукції).

Чистий дохід від виробництва в свою чергу обчислюють як граничні витрати регіону на виробництво товарної продукції, помножені на фізичний обсяг її виробництва в регіоні.

Рисунок Ж.4 – Зміна у надлишку виробника

Ж.5 Плата за перевантаження з урахуванням проекту може бути обчисленна як різниця в цінах між регіонами імпорту та експорту, помножена на додаткову потужність, що продана через новий перетин.

Динаміка сумарної плати за перевантаження може бути обчислена як зміна плати за перевантаження на всіх перетинах між регіонами імпорту та експорту.
Додаток І
(обов’язковий)

МЕТОДИЧНІ ЗАСАДИ РАНЖУВАННЯ ІНВЕСТИЦІЙНОЇ ПРИВАБЛИВОСТІ ОБ’ЄКТІВ НОВОГО БУДІВНИЦТВА ЕЛЕКТРИЧНИХ МЕРЕЖ, ВІДНЕСЕНИХ ДО ПРОЕКТІВ ІНШІ (ВИД 1)

I.1 Ранжування інвестиційної привабливості об’єктів нового будівництва електричних мереж, віднесених до проектів інші (вид 1), рекомендовано здійснювати за методами «витрати – ефект», узагальненого показника або цільового програмування.

Ранжування інвестиційної привабливості об’єктів будівництва здійснюють в межах кожного з розділів Плану розвитку системи передачі на наступні 10 років.

I.2 Для кожної з характеристик проекту відповідно до критеріїв, наведених в таблиці I.1, обчислюють відносні частинні показники ефективності проекту.

Таблиця I.1 – Частинні критерії і відносні частинні показники ефективності проекту

<table>
<thead>
<tr>
<th>Використаний частинний критерій ефективності проекту</th>
<th>Відносний частинний показник ефективності проекту</th>
<th>Позначення відносного частинного показника ефективності проекту</th>
</tr>
</thead>
<tbody>
<tr>
<td>Максимум пропускної здатності мережі</td>
<td>Збільшення пропускної здатності мережі</td>
<td>$e_{i,1}$</td>
</tr>
<tr>
<td>Максимум соціально-економічного ефекту (добробуту)</td>
<td>Соціально-економічний ефект (добробут)</td>
<td>$e_{i,2}$</td>
</tr>
<tr>
<td>Максимум підтримки інтеграції ВДЕ</td>
<td>Підтримка інтеграції ВДЕ</td>
<td>$e_{i,3}$</td>
</tr>
<tr>
<td>Максимум надійності електропостачання</td>
<td>Підвищення надійності електропостачання</td>
<td>$e_{i,4}$</td>
</tr>
<tr>
<td>Мінімум технологічних витрат електричної енергії (енергоефективність)</td>
<td>Зменшення технологічних витрат електричної енергії (енергоефективність)</td>
<td>$e_{i,5}$</td>
</tr>
<tr>
<td>Максимум технічної стійкості / запасу експлуатаційної безпеки системи</td>
<td>Збільшення технічної стійкості / запасу експлуатаційної безпеки системи</td>
<td>$e_{i,6}$</td>
</tr>
<tr>
<td>Мінімум впливу на навколишнє середовище для тваринного світу</td>
<td>Вплив на навколишнє середовище для тваринного світу</td>
<td>$e_{i,7}$</td>
</tr>
<tr>
<td>Мінімум впливу на навколишнє середовище для рослининого світу</td>
<td>Вплив на навколишнє середовище для рослининого світу</td>
<td>$e_{i,8}$</td>
</tr>
<tr>
<td>Мінімум соціального впливу</td>
<td>Соціальний вплив</td>
<td>$e_{i,9}$</td>
</tr>
</tbody>
</table>
І.3 Відносний частинний показник збільшення пропускної здатності мережі $e_{i,d}$ для i-го проекту обчислюють за формулою:

$$ e_{i,d} = 2 - \frac{\Delta Bop_i / \Delta Wop_i}{Bop / Wop}, \quad (I.1) $$

де ΔBop_i – прогнозоване зростання вартості переданої електроенергії за i-м проектом, відпущеної в ринок електричної енергії, грн.;

ΔWop_i – прогнозоване зростання кількості переданої електроенергії за i-м проектом, відпущеної в ринок електричної енергії, кВт·год;

Bop – прогнозована вартість електроенергії, відпущеної в ринок електричної енергії, грн.;

Wop – прогнозована кількість електроенергії, відпущеної в ринок електричної енергії, кВт·год.

І.4 Відносний частинний показник соціально-економічного ефекту (добробуту) $e_{i,2}$ для i-го проекту обчислюють за формулою:

$$ e_{i,2} = \frac{\sum_{n=1}^{15} (\Pi(Kd_i,n) - \Pi(0,n)) \cdot \left(1 + \frac{rd}{100}\right)^{-n}}{Kd_i}, \quad (I.2) $$

де $\Pi(0,n)$, $\Pi(Kd_i,n)$ – прогнозований прибуток без додаткових капітальних вкладень в мережу та з додатковими капітальними вкладеннями (інвестиціями) за i-м проектом, грн.;

Kd_i – додаткові капітальні вкладення (інвестиції) за i-м проектом, грн.;

n – роки розрахункового періоду;

rd – прогнозована звичайна ставка за депозит (норма дисkontu), %.

Прогнозований прибуток без додаткових капітальних вкладень (інвестиції) в мережу $\Pi(0,n)$ обчислюють за формулою:

$$ \Pi(0,n) = B(0,n) - BB(0,n) - Bm(0,n) + Pp(0,n), \quad (I.2.1) $$

Прогнозований прибуток з додатковими капітальними вкладеннями (інвестиціями) в мережу $\Pi(Kd_i,n)$ за i-м проектом обчислюють за формулою:

$$ \Pi(Kd_i,n) = B(Kd_i,n) - BB(Kd_i,n) - Bm(Kd_i,n) + Pp(Kd_i,n), \quad (I.2.2) $$

de $B(0,n)$, $B(Kd_i,n)$ – прогнозована вартість переданої електроенергії на вихід з мережі без додаткових капітальних вкладень (інвестицій) в мережу та з додатковими капітальними вкладеннями (інвестиціями) в мережу за i-м проектом, відповідно, грн.;

$BB(0,n)$, $BB(Kd_i,n)$ – прогнозована вартість отриманої електроенергії на вході в мережу без додаткових капітальних вкладень (інвестицій) в мережу та вартість отриманої електроенергії з додатковими капітальними вкладеннями (інвестиціями) в мережу за i-м проектом, відповідно, грн.;

$Bm(0,n)$, $Bm(Kd_i,n)$ – прогнозовані витрати за i-м проектом, грн.;

$Pp(0,n)$, $Pp(Kd_i,n)$ – прогнозована плата за приєднання за i-м проектом, грн.
Додаткові капітальні вкладення (інвестиції) за \(i \)-м проектом обчислюють за формулою:

\[
K_d_i = \sum_{n=1}^{15} K_i \cdot \left(1 + \frac{rk}{100}\right)^{-n},
\]
(І.2.3)

де \(K_i \) – додаткові капітальні вкладення (інвестиції) за \(i \)-м проектом у \(n \)-й рік, грн.;

\(rk \) – прогнозована ставка за використання коштів, %.

Прогнозовану плату за приєднання \(Pp_i \) за \(i \)-м проектом обчислюють за формулою:

\[
Pp_i = \sum_{n=1}^{15} Pp_i \cdot \left(1 + \frac{rd}{100}\right)^{-n},
\]
(І.2.4)

Тривалість розрахункового періоду приймають 15 років з моменту планованого введення об’єкта в експлуатацію.

У випадках, коли визначення величин, які входять до (Ж.2), утруднене або неможливе, для обчисления відносного частинного показника соціально-економічного ефекту (добробуту) дозволяється використовувати формулу Ж.2а

\[
e_{i,3} = \frac{\sum_{n=1}^{15} \left(W_{i,n} \cdot T_n + Pp_{i,n}\right) \cdot \left(1 + \frac{rd}{100}\right)^{-n}}{Kd_i} + \sum_{n=1}^{15} Pp_i \cdot \left(1 + \frac{rd}{100}\right)^{-n},
\]
(І.2а)

де \(W_{i,n} \) – прогнозовані річні обсяги передачі електроенергії за \(i \)-тим проектом в \(n \)-й рік, кВт·год;

\(T_n \) – прогнозований тариф на передачу електроенергії магістральними (міждержавними) електромережами в \(n \)-й рік, грн./кВт·год.

Тривалість розрахункового періоду приймають 15 років з моменту планованого введення об’єкту в експлуатацію.

І.5 Відносний частинний показник підтримки інтеграції ВДЕ \(e_{i,3} \) для \(i \)-го проекту обчислюють за формулою:

\[
e_{i,3} = 1 + \frac{Bop / Wop}{\left(Wvde_i \cdot Tvde_i\right) / Wvde_i},
\]
(І.3)

де \(Wvde_i \) – прогнозоване значення кількості генерованої ВДЕ електроенергії внаслідок реалізації \(i \)-го проекту, кВт·год;

\(Tvde_i \) – прогнозоване значення тарифу на електроенергію, генеровану ВДЕ внаслідок реалізації \(i \)-го проекту, грн./кВт·год.
І.6 Відносний частинний показник підвищення надійності електропостачання \(e_{i,4} \) для \(i \)-го проекту обчислюють за формулою:

\[
e_{i,4} = 2 - \frac{\Delta W_i}{8760 \cdot P_{\text{max},i}},
\]

де \(\Delta W_i \) – прогнозована річна недопоставлена електроенергія внаслідок реалізації \(i \)-го проекту, кВт·год;

\(P_{\text{max},i} \) – річний максимум навантаження, передбачений \(i \)-м проектом, кВт.

І.7 Відносний частинний показник зменшення технологічних витрат електричної енергії (енергоефективність) \(e_{i,5} \) для \(i \)-го проекту обчислюють за формулою:

\[
e_{i,5} = 1 + \frac{W_{ni} \cdot 0.02 - A_i}{W_{ni}},
\]

де \(W_{ni} \) – передана електроенергія внаслідок реалізації \(i \)-го проекту, кВт·год;

\(A_i \) – технологічні витрати електроенергії (енергоефективність) внаслідок реалізації \(i \)-го проекту, кВт·год;

0,02 – коефіцієнт витрат електроенергії, що відповідає економічно доцільному рівню енергоефективності, в.о.

І.8 Відносний частинний показник збільшення технічної стійкості / запасу експлуатаційної безпеки системи \(e_{i,6} \) для \(i \)-го проекту обчислюють за формулою:

\[
e_{i,6} = 1 - \frac{A_{ci}}{W_{ni}},
\]

де \(A_{ci} \) – недовідпуск електроенергії з метою збільшення технічної стійкості / запасу експлуатаційної безпеки системи за \(i \)-м проектом, кВт·год.

І.9 Відносний частинний показник впливу на навколишнє середовище для тваринного світу \(e_{i,7} \) для \(i \)-го проекту обчислюють за формулою:

\[
e_{i,7} = 1 + \frac{M_i}{M_{\text{max}}},
\]

де \(M_i \) – кількість перетинів об’єктами \(i \)-го проекту шляхів міграції птахів та їх зон розселення (Г.9–Г.10);

\(M_{\text{max}} \) – максимальна кількість шляхів міграції птахів (див. додаток Г).
І.10 Відносний частинний показник впливу на навколишнє середовище для рослинного світу \(e_{i,8} \) для \(i \)-го проекту обчислюють за формулою:

\[
e_{i,8} = 1 + \frac{S_{f_i}}{S_0},
\]

де \(S_0 \) — загальна площа об’єкту за \(i \)-м проектом з урахуванням санітарно-захисних зон, км\(^2\); \(S_{f_i} \) — площа зелених насаджень, що підлягає вирубці за \(i \)-м проектом, км\(^2\).

І.11 Відносний частинний показник соціального впливу \(e_{i,9} \) для \(i \)-го проекту обчислюють за формулою:

\[
e_{i,9} = 1 + \frac{\sum S_{i,n} \cdot \gamma_{i,n}}{\gamma_{\text{max}} \cdot \sum S_{i,n}},
\]

де \(S_{i,n} \) — сумарна площа (разом із охоронною зоною), яку займають об’єкти \(i \)-го проекту на \(n \)-й території, км\(^2\); \(\gamma_{i,n} \) — густина населення на \(n \)-й території за \(i \)-м проектом, осіб/км\(^2\) (див. додаток \(\Gamma \)); \(\gamma_{\text{max}} \) — найбільша густина населення адміністративної території, осіб/км\(^2\) (див. додаток \(\Gamma \)).

І.12 Значення узагальненого (інтегрального) показника ефективності для \(i \)-го проекту за методом «витрати — ефект» обчислюють за формулою:

\[
E_1 = \frac{\prod_{j=1}^{6} e_{i,j}}{\prod_{j=7}^{9} e_{i,j}},
\]

де \(j=1, \ldots, 6 \) — частинні показники, які бажано збільшувати; \(j=7, \ldots, 9 \) — частинні показники, які бажано зменшувати.

І.13 Значення узагальненого (інтегрального) показника ефективності для \(i \)-го проекту за методом узагальненого показника обчислюють за формулою:

\[
E_2 = \sum_{j=1}^{9} k_j \cdot e_{i,j},
\]

де \(k_j \) — коефіцієнт значимості \(j \)-го показника, який визначається експертним шляхом; \(e_{i,j} \) — значення \(j \)-го показника \(i \)-го проекту.
Значення k_i є додатними для показників, які підвищують інвестиційну привабливість об’єкта будівництва ($k_i - k_0$), і від’ємними для показників, які не сприяють цьому ($k_i - k_0$). Значення k_i для групи проектів визначаються експертним шляхом.

Інвестиційно привабливими вважаються об’єкти з більшим значенням $E2_i$.

І.14 Значення узагальненого (інтегрального) показника ефективності для i-го проекту за методом цільового програмування обчислюють за формулою:

$$E3_i = \sum_{j=1}^{g} g_j \cdot (e_{i,j} - w_{ijd})^2,$$

де g_j – коефіцієнт важливості частинного показника, який встановлено особою, що приймає рішення;

w_{ijd} – «ідеальне» (з точки зору особи, що приймає рішення) значення частинного показника.

Значення g_j для групи проектів визначаються особою, що приймає рішення. Інвестиційно привабливими вважаються об’єкти з більшим значенням $E3_i$.

І.15 Приклади розрахунків виконані відповідно до додатка І, наведено в додатку К.
Додаток К
(довідковий)

ПРИКЛАД РОЗРАХУНКУ УЗАГАЛЬНЕНОГО (ІНТЕГРАЛЬНОГО) ПОКАЗНИКА ЕФЕКТИВНОСТІ ПРОЕКТУ З НОВОГО БУДІВНИЦТВА ЛІНІЙ ЕЛЕКТРОПЕРЕДАВАННЯ НАПРУГОЮ 330 кВ, ВІДНЕСЕНОГО ДО ПРОЕКТУ ІНШІЙ (ВИД 1)

К.1 Розглянемо три заплановані проекти з нового будівництва ліній електропередавання напругою 330 кВ з довжинами відповідно 130, 150 і 165 км. Характеристики проектів наведено в таблиці К.1, де позначення характеристик проекту відповідають додатку І.

Таблиця К.1 – Вихідні дані для розрахунку відносних частинних показників ефективності проекту

<table>
<thead>
<tr>
<th>№п/п</th>
<th>Характеристика проекту</th>
<th>Одиниця виміру</th>
<th>Проект</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Відносний частинний показник збільшення пропускної здатності мережі $e_{i,1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W_{op} кВт·год</td>
<td>$160\cdot10^9$</td>
<td>$160\cdot10^9$</td>
</tr>
<tr>
<td></td>
<td>B_{op} грн.</td>
<td>$100\cdot10^9$</td>
<td>$100\cdot10^9$</td>
</tr>
<tr>
<td></td>
<td>ΔW_{op} кВт·год</td>
<td>$2\cdot10^9$</td>
<td>$2\cdot10^9$</td>
</tr>
<tr>
<td></td>
<td>ΔB_{op} грн.</td>
<td>$1,2\cdot10^9$</td>
<td>$1,2\cdot10^9$</td>
</tr>
<tr>
<td>2</td>
<td>Відносний частинний показник соціально-економічного ефекту (добробуту) $e_{i,2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rd %</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>rk %</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>K_i грн.</td>
<td>0,8·10^8; 0,8·10^8; 0</td>
<td>0,8·10^8; 1,0·10^8; 0</td>
</tr>
<tr>
<td></td>
<td>T_n грн./кВт·год</td>
<td>0,054</td>
<td>0,054</td>
</tr>
<tr>
<td></td>
<td>n роки</td>
<td>1..15</td>
<td>1..15</td>
</tr>
<tr>
<td></td>
<td>W_{in} кВт·год</td>
<td>0; 133·106; 0</td>
<td>0; 133·106; 0</td>
</tr>
<tr>
<td></td>
<td>P_{pi} грн.</td>
<td>4·10^8</td>
<td>4·10^8</td>
</tr>
<tr>
<td>3</td>
<td>Відносний частинний показник підтримки інтеграції ВДЕ $e_{i,3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W_{op} кВт·год</td>
<td>$160\cdot10^9$</td>
<td>$160\cdot10^9$</td>
</tr>
<tr>
<td></td>
<td>B_{op} грн.</td>
<td>$100\cdot10^9$</td>
<td>$100\cdot10^9$</td>
</tr>
<tr>
<td></td>
<td>W_{vdei} кВт·год</td>
<td>$4\cdot10^8$</td>
<td>$4\cdot10^8$</td>
</tr>
<tr>
<td></td>
<td>T_{vdei} грн./кВт·год</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Відносний частинний показник підвищення надійності електропостачання $e_{i,4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔW_i кВт·год</td>
<td>0,8·10^8</td>
<td>1,0·10^8</td>
</tr>
<tr>
<td></td>
<td>P_{maxi} кВт</td>
<td>2·10^9</td>
<td>2·10^9</td>
</tr>
<tr>
<td>5</td>
<td>Відносний частинний показник зменшення технологічних витрат електричної енергії (енергоефективність) $e_{i,5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W_{ni} кВт·год</td>
<td>2·10^9</td>
<td>2·10^9</td>
</tr>
<tr>
<td></td>
<td>A_i кВт·год</td>
<td>36·10^8</td>
<td>40·10^8</td>
</tr>
</tbody>
</table>
Продовження таблиці К.1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Позначення відносного частинного показника ефективності проекту</th>
<th>Назва відносного частинного показника ефективності проекту</th>
<th>Значення відносного частинного показника ефективності проекту</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$e_{i,1}$</td>
<td>Збільшення пропускної здатності мережі</td>
<td>1,04 1,04 1,04</td>
</tr>
<tr>
<td>2</td>
<td>$e_{i,2}$</td>
<td>Соціально-економічний ефект (добробут)</td>
<td>18,423 16,446 13,482</td>
</tr>
<tr>
<td>3</td>
<td>$e_{i,3}$</td>
<td>Підтримка інтеграції ВДЕ</td>
<td>1,089 1,089 1,089</td>
</tr>
<tr>
<td>4</td>
<td>$e_{i,4}$</td>
<td>Підвищення надійності електропостачання</td>
<td>2 2 2</td>
</tr>
<tr>
<td>5</td>
<td>$e_{i,5}$</td>
<td>Зменшення технологічних витрат електричної енергії (енергоефективність)</td>
<td>1,002 1,0 0,998</td>
</tr>
</tbody>
</table>
Продовження таблиці К.2

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>e_{i6}</th>
<th>Збільшення технічної стійкості / запас експлуатаційної безпеки системи</th>
<th>1,0</th>
<th>1,0</th>
<th>0,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>e_{i7}</td>
<td>Вплив на навколишнє середовище для тваринного світу</td>
<td>1,1</td>
<td>1,133</td>
<td>1,167</td>
</tr>
<tr>
<td>8</td>
<td>e_{i8}</td>
<td>Вплив на навколишнє середовище для рослинного світу</td>
<td>1,133</td>
<td>1,067</td>
<td>1,0</td>
</tr>
<tr>
<td>9</td>
<td>e_{i9}</td>
<td>Соціальний вплив</td>
<td>1,315</td>
<td>1,427</td>
<td>1,611</td>
</tr>
</tbody>
</table>

Таблиця К.3 – Результати розрахунку узагальненого (інтегрального) показника ефективності проекту

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Позначення узагальненого (інтегрального) показника ефективності проекту</th>
<th>Метод розрахунку узагальненого (інтегрального) показника ефективності проекту</th>
<th>Значення узагальненого (інтегрального) показника ефективності проекту</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EI_{j}</td>
<td>Витрати – ефект</td>
<td>28,1</td>
</tr>
<tr>
<td>2</td>
<td>$E2_{j}$</td>
<td>Узагальнений показник</td>
<td>25,5</td>
</tr>
<tr>
<td>3</td>
<td>$E3_{j}$</td>
<td>Цільове програмування</td>
<td>5,3</td>
</tr>
</tbody>
</table>

Примітка 1. Значення k_j прийняти під час розрахунку значення узагальненого (інтегрального) показника ефективності для i-го проекту за методом узагальненого показника дорівнюють одиниці.

Примітка 2. Значення g_j прийняті під час розрахунку значення узагальненого (інтегрального) показника ефективності для i-го проекту за методом цільового програмування дорівнюють одиниці.
Додаток Л
(довідковий)

ПРИКЛАД ВИКОРИСТАННЯ SWOT-АНАЛІЗУ ПРОЕКТУ
З МЕТОЮ РАНЖУВАННЯ ІНВЕСТИЦІЙНОЇ ПРИВАБЛИВОСТІ ОБ’ЄКТІВ
РЕКОНСТРУКЦІЇ І ТЕХНІЧНОГО ПЕРЕОСНАЩЕННЯ ЕЛЕКТРИЧНИХ
МЕРЕЖ, НЕ ПОВ’ЯЗАНИХ ІЗ ПІДВИЩЕННЯМ ПРОПУСКНОЇ ЗДАТНОСТІ
МЕРЕЖІ, ВІДНЕСЕНИХ ДО ПРОЕКТІВ ІНШІ (ВИД 2)

Л.1 Ранжування інвестиційної привабливості об’єктів реконструкції
і технічного переоснащення електричних мереж, не пов’язаних із підвищенням
пропускної здатності мережі, віднесених до проектів інші (вид 2), рекомендовано
здійснювати на підставі SWOT-аналізу проекту.

Л.2 SWOT-аналіз сильних та слабких сторін проекту, можливостей щодо
змін на краще та загроз щодо його позитивної реалізації проводиться виходячи
з того, що:
– сильні сторони – це існуючі особливості проекту, які містять основу його
реалізації;
– слабкі сторони – це існуючі особливості проекту, які ускладнюють умови
реалізації;
– можливості – це існуючі особливості, умови, сприятливі для реалізації
проекту, що є або можуть виникнути в майбутньому;
– загрози – це несприятливі для реалізації проекту умови, що є або можуть
виникнути в майбутньому.

Л.3 Розглянемо два проекти з реконструкції і технічного переоснащення
електричних мереж.

Проект 1 характеризується наступними показниками: ПЛ – 330 кВ; довжина
ПЛ – 12 км; ПЛ перетинає 8 лісополос; 1,5 км проходить по лісополосах; ПЛ
2 рази перетинає автотраси міжнародного значення; 3 рази перетинає залізну
дорогу; 2 рази перетинає ПЛ 330 кВ; 2 рази перетинає дволанцюгову ПЛ 330 кВ;
2 рази перетинає водоводи високого тиску; перетинає 89 приватизованих
земельних участків.

Проект 2 має наступні характеристики: КЛ – 330 кВ; довжина КЛ – 3 км;
3 рази перетинає водоводи високого тиску, 1 раз перетинає газопровід високого
тиску.

Л.4 Відповідно до порядку, наведеного в Л.2, проводимо SWOT-аналіз
проекту, результати якого наведено в таблиці Л.1.
Таблиця Л.1 – SWOT-аналіз проекту

<table>
<thead>
<tr>
<th>Показник сильних і слабких сторін</th>
<th>Показник можливостей і загроз</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проект 1</td>
<td></td>
</tr>
<tr>
<td>Сильні сторони:</td>
<td>Можливості:</td>
</tr>
<tr>
<td>Максимальне віддалення від населених пунктів</td>
<td>Прискорить реалізацію проекту</td>
</tr>
<tr>
<td>Мінімальний вплив на навколишнє середовище</td>
<td></td>
</tr>
<tr>
<td>Процес погодження близький до завершення</td>
<td></td>
</tr>
<tr>
<td>Низька вартість</td>
<td></td>
</tr>
<tr>
<td>Слабкі сторони:</td>
<td>Загрози:</td>
</tr>
<tr>
<td>Велика кількість перетинів</td>
<td>Низький рівень безпеки лінії</td>
</tr>
<tr>
<td>Складність переходу через залізничну петлю</td>
<td>Можливі проблеми в процесі експлуатації</td>
</tr>
<tr>
<td>Проект 2</td>
<td></td>
</tr>
<tr>
<td>Сильні сторони:</td>
<td>Можливості:</td>
</tr>
<tr>
<td>Максимальне віддалення від населених пунктів</td>
<td>Повністю вирішити всі технічні, експлуатаційні, екологічні, земельні і соціальні питання</td>
</tr>
<tr>
<td>Мінімальний вплив на навколишнє середовище</td>
<td></td>
</tr>
<tr>
<td>Значне підвищення безпеки і зниження вартості експлуатації лінії на весь термін її служби</td>
<td></td>
</tr>
<tr>
<td>Слабкі сторони:</td>
<td>Загрози:</td>
</tr>
<tr>
<td>Великий обсяг погоджень з різними організаціями</td>
<td>Ймовірність значного затягування термінів реалізації проекту (на 1–1,5 роки)</td>
</tr>
<tr>
<td>Велика вартість (в 3,5 раза більше порівняно з ПЛ)</td>
<td></td>
</tr>
</tbody>
</table>

Л.5 Як випливає з таблиці Л.1, найбільш привабливим відповідно до проведенного SWOT-аналізу проекту є проект 2, менш привабливим – проект 1.
Додаток М
(довідковий)

БІБЛІОГРАФІЯ

1 Закон України «Про Загальнодержавну програму формування національної екологічної мережі України на 2000–2015 роки»

2 Закон України «Про ринок електричної енергії»

3 Розпорядження Кабінету Міністрів України від 18 серпня 2017 № 605-р «Про схвалення Енергетичної стратегії України на період до 2035 року «Безпека, енергоефективність, конкурентоспроможність»

4 Наказ Міністерства економічного розвитку і торгівлі України від 14 серпня 2013 № 971 «Про затвердження Методичних рекомендацій з питань методологічного забезпечення складання середньо- та довгострокових стратегічних планів розвитку державних підприємств, державних акціонерних товариств та господарських структур»

5 ГКД 340.000.001-95 Визначення економічної ефективності капітальних вкладень в енергетику. Методика. Загальні методичні положення

6 ГКД 340.000.002-97 Визначення економічної ефективності капітальних вкладень в енергетику. Методика. Енергосистеми і електричні мережі

7 ГКД 34.20.507-2003 Технічна експлуатація електричних станцій і мереж.

Правила

8 ГКД 34.20.601-2003 Правила організації технічного обслуговування та ремонту обладнання, будівель і споруд електростанцій та мереж

9 ГНД 34.09.104-2003 Методика складання структури балансу електроенергії в електричних мережах 0,38–150 кВ, аналізу його складових і нормування технологічних витрат електроенергії

10 ДБН А.2.2-3-2014 Склад та зміст проектної документації на будівництво

11 СОУ-Н ЕЕ 40.1-00100227-101:2014 Норми технологічного проектування енергетичних систем і електричних мереж 35 кВ і вище

12 СОУ-Н ЕЕ 40.1-00100227-103:2014 Виконання Схем перспективного розвитку ОЕС України, окремих енерговузлів та енергорайонів. Правила

13 СОУ-Н МЕВ 40.1-00100227-68:2012 Стійкість енергосистем. Керівні вказівки

14 СОУ-Н МЕВ 40.1-00100227-91:2012 Проектування. Склад і зміст матеріалів оцінки впливів на навколишнє середовище (ОВНС) при проектуванні і будівництві електричних мереж напругою 6–750 кВ. Методичні вказівки

15 СОУ-Н МПЕ 40.1.08.551:2009 Інструкція про розслідування і облік технологічних порушень на об’єктах електроенергетики і в об’єднанні енергетичній системі України

21 Procedure ENTSO-E. Inclusion of third party projects – transmission and storage – in the 2014 release of the TYNDP (Порядок ENTSO-E щодо включення проектів третіх сторін (передавання та зберігання) у випуск ДрПРМ у 2014 р.)

23 The Ten-Year Network Development Plan (TYNDP) 2014 (ДрПРМ у 2014 р.).
Код УКНД 01.29.240.01(03.100)

Ключові слова: електричні мережі, витрати, вигоди, інвестиційна привабливість будівництва, вимоги ENTSO-E.